

 [image: First Edition]

 DNS and BIND on IPv6

Cricket Liu

Editor
Mike Loukides

Copyright © 2011 Cricket Liu

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. The image of crickets
 and related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and author assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

Preface

I’m sorry for writing this ebook.
Well, that’s not quite accurate. What I mean is, I’m sorry I didn’t
 have time to update DNS and BIND to include all this
 new IPv6 material. DNS and BIND deserves a sixth
 edition, but I’m afraid my schedule is so hectic right now that I just don’t
 have time to write it. Heck, I’m on a flight from Boston to Tampa as I write
 this. (Long flights are great for writing prefaces, not so great for writing
 books about Internet technologies. Though in-flight Internet access does
 help.)
This book is essentially all the material related to IPv6 that I would
 have included in the sixth edition of DNS and BIND (and
 will, once I get to it). It covers how DNS was extended
 to accommodate IPv6 addresses, both for forward-mapping and reverse-mapping.
 It describes how to configure a BIND name server to run on an IPv6 network
 and how to troubleshoot problems with IPv6 forward- and reverse-mapping. It
 even covers DNS64, a DNS-based transition technology that, together with a
 companion technology called NAT64, can help islands of IPv6-only speaking
 hosts communicate with IPv4 resources.
Audience

I wrote this book for DNS administrators who are rolling out IPv6 on
 their networks and who need to understand how to support IPv6 on those
 networks with DNS. This ebook covers the underlying theory, including the
 structure and representation of IPv6 addresses; the A, M, and O flags in
 Router Advertisements and what they mean to DNS; as well as the nuts and
 bolts, including the syntax of AAAA records and PTR records in the
 ip6.arpa reverse-mapping zone and the syntax and
 semantics of configuring a BIND name server.

Assumptions This Book Makes

This book assumes that you understand basic DNS theory and BIND
 configuration. It doesn’t explain what a resource record is or how to edit
 a zone data file, or remind you that you need to increment the serial
 number of the zone’s SOA record before reloading it (other than just
 now)—for that, I highly recommend DNS and BIND. But
 that shouldn’t surprise you.
The book doesn’t assume that you know anything
 in particular about IPv6, though.

Contents of This Book

This book is organized into five chapters as follows:
	Chapter 1, DNS and IPv6
	This chapter explains the motivation behind the move to IPv6
 and describes the structure and representation of IPv6 addresses. It
 also introduces the syntaxes of AAAA records and PTR records in the
 ip6.arpa IPv6 reverse-mapping zone and explains
 how to delegate subdomains of ip6.arpa
 zones.

	Chapter 2, BIND on IPv6
	This chapter describes how to configure BIND name servers to
 run on IPv6 networks, including how to configure IPv6 master and
 slave name servers, how to use IPv6 addresses and networks in ACLs,
 and how to register and delegate to IPv6-speaking name servers. The
 chapter also includes a section on special considerations that may
 arise because IPv6 connectivity is not yet pervasive.

	Chapter 3, Resolver Configuration
	This chapter shows how to configure popular stub resolvers
 (Linux/Unix, Mac OS X and Windows) to query IPv6-speaking name
 servers. It also covers dynamic configuration of resolvers using
 DHCPv6 and Router Advertisements.

	Chapter 4, DNS64
	This chapter explains the DNS64 transition technology, which
 allows clients with IPv6-only network stacks to communicate with
 IPv4 servers.

	Chapter 5, Troubleshooting
	This chapter describes how to use the common
 nslookup and dig
 troubleshooting tools to look up the IPv6 addresses of a domain name
 or reverse-map an IPv6 address to a domain name. It also covers how
 to query a name server’s IPv6 address.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Plain text
	Indicates menu titles, menu options, menu buttons, and
 keyboard accelerators (such as Alt and Ctrl).

	Italic
	Indicates new terms, URLs, email addresses, filenames, file
 extensions, pathnames, directories, and Unix utilities.

	Constant width
	Indicates commands, options, switches, variables, attributes,
 keys, functions, types, classes, namespaces, methods, modules,
 properties, parameters, values, objects, events, event handlers, XML
 tags, HTML tags, macros, the contents of files, or the output from
 commands.

	Constant width
 bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied
 values.

Note
This icon signifies a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “DNS and BIND on IPv6 by Cricket Liu (O’Reilly).
 Copyright 2011 Cricket Liu, 978-1-449-30519-2.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets you
 easily search over 7,500 technology and creative reference books and
 videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
 our library online. Read books on your cell phone and mobile devices.
 Access new titles before they are available for print, and get exclusive
 access to manuscripts in development and post feedback for the authors.
 Copy and paste code samples, organize your favorites, download chapters,
 bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the United States or Canada)
	(707) 829-0515 (international or local)
	(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/9781449305192

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Many thanks to my long-time editor, Mike Loukides, for suggesting
 this book in the first place. (Though now he’s going to start pressuring
 me to get going on the sixth edition of DNS and
 BIND.) Thanks also to my boss at Infoblox, Steve Nye, who
 supported the project, and to my old friend and co-conspirator in the Ask
 Mr. DNS podcast, Matt Larson, who helps keep my DNS skills from atrophying
 completely. And much credit is due Owen DeLong for his excellent technical
 review.
Most of all, though, thanks to my family: Walt and Greta, Charlie
 and Jessie, and especially my wife, Paige. They give me both the time to
 write, and the reason.

Chapter 1. DNS and IPv6

Background

In early February 2011, the Internet Assigned Numbers Authority, or
 IANA, assigned the last remaining IPv4 address space to the five Regional
 Internet Registries (RIRs). As of this writing, the RIRs haven’t yet doled
 out that address space to carriers and other customers, but it’s clear
 that the exhaustion of IPv4 address space is imminent.
For most organizations on the Internet, the depletion of the
 Internet’s unallocated IPv4 address space won’t necessitate immediate
 changes—IPv4 isn’t going anywhere for the foreseeable future. In certain
 exceptional cases, however, organizations may need to implement IPv6
 almost right away: mobile carriers and ISPs seeking to expand their
 subscriber bases, for example, may need to use IPv6 for new subscribers if
 they lack additional IPv4 address space to use for expansion.
The Internet’s transition from IPv4 to IPv6 has begun. With the US
 government’s mandate that government agencies move their networks to IPv6,
 a growing number of users will access the Internet over the new protocol,
 and an increasing number of resources—websites, name servers, mail
 servers, and more—will be accessible via IPv6. In some cases, some may
 only be accessible over IPv6.
The transition to IPv6 will take years, maybe decades, to complete.
 Today, of course, IPv6 is already routed over the Internet: 9% of the
 Internet’s Autonomous Systems advertise routes to both IPv4 and IPv6
 networks. But IPv6 constitutes a tiny fraction of the traffic routed over
 the Internet. Organizations deploying new IPv6 networks today need to
 implement transition technologies that enable their IPv6-based devices to
 reach IPv4-only services.
Over time, however, the balance will shift, and so will the
 responsibility. As IPv6 becomes the predominant protocol on the Internet,
 the remaining pockets of IPv4 will need to accommodate IPv6, not vice
 versa. I imagine the transition playing out something like the move from
 rotary dialing to Touch-Tone™; in 1963, when the switch began, Touch-Tone™
 was a novelty you had to pay extra for. Now, of course, Touch-Tone™ is the
 norm (unless you’ve already moved on to VoIP) and rotary dialing is a
 curiosity you have to pay your phone company more to accommodate—if they
 can still handle it at all.

IPv6 and DNS

The exhaustion of the IPv4 address space wasn’t unexpected, of
 course. The Internet Engineering Task Force (IETF) developed IP version 6
 in the 1990s largely in anticipation of this day. Likewise, the Domain
 Name System was extended to accommodate IPv6’s longer IP addresses by
 adding new record types, and new versions of name servers, including BIND,
 were released to support those new record types as well as the use of IPv6
 to transport queries and responses. At this point, all but ancient BIND
 name servers support IPv6, though in most cases that support isn’t
 configured or used. We’ve just been waiting patiently for the protocol to
 catch on!

The ABCs of IPv6 Addresses

The most widely known aspect of IPv6, and really the only one that
 matters to DNS, is the length of the IPv6 address: 128 bits, four times as
 long as IPv4’s 32-bit address. The preferred representation of an IPv6
 address is eight groups of as many as four hexadecimal digits, separated
 by colons. For example:
2001:0db8:0123:4567:89ab:cdef:0123:4567
The first group, or quartet, of hex digits
 (2001, in this example) represents the most significant (or highest-order)
 sixteen bits of the address. In binary terms, 2001 is equivalent to
 0010000000000001.
Groups of digits that begin with one or more zeros don’t need to be
 padded to four places, so you can also write the previous address
 as:
2001:db8:123:4567:89ab:cdef:123:4567
Each group must contain at least one digit, though, unless you’re
 using the :: notation. The :: notation allows you to compress sequential
 groups of zeros. This comes in handy when you’re specifying just an IPv6
 prefix. For example:
2001:db8:dead:beef::
specifies the first 64 bits of an IPv6 address as
 2001:db8:dead:beef and the remaining 64 as
 zeros.
You can also use :: at the beginning of an IPv6 address to specify a
 suffix. For example, the IPv6 loopback address is commonly written
 as:
::1
or 127 bits of zero followed by a single one bit. You can even use
 :: in the middle of an address as shorthand for contiguous groups of
 zeros:
2001:db8:dead:beef::1
You can use the :: shorthand only once in an address, since more
 than one would be ambiguous.
IPv6 prefixes are specified in a format similar to IPv4’s CIDR
 notation. As many bits of the prefix as are significant are expressed in
 the standard IPv6 notation, followed by a slash and a decimal count of
 exactly how many significant bits there are. So the following four prefix
 specifications are equivalent (though obviously not equivalently
 terse):
2001:db8:dead:beef:0000:00f1:0000:0000/96
2001:db8:dead:beef:0:f1:0:0/96
2001:db8:dead:beef::f1:0:0/96
2001:db8:dead:beef:0:f1::/96
IPv6 is similar to IPv4 in that it supports variable-length network
 masks, and addresses are divided into network and host portions. However,
 in IPv6, there are recommended network masks for networks and subnets: the
 first 48 bits of an IPv6 address should identify a particular end site and
 a 64-bit prefix should identify one of up to 65,536 subnetworks at the
 site identified by the “parent” 48-bit prefix. As of this writing, all
 global unicast IPv6 addresses on the Internet (addresses that are unique
 and globally routable) have prefixes that begin with the binary value 001
 (equivalent to 2000::/3). These are assigned by Regional Internet
 Registries (RIRs) and Internet service providers. The prefix itself may be
 hierarchical, with an RIR responsible for allocating higher-order bits to
 various ISPs, and ISPs responsible for allocating the lowest-order bits of
 the prefix to its customers.
After the end-site prefix, unicast IPv6 addresses typically contain
 another 16 bits that identify the particular subnetwork within an end
 site, called the subnet ID. The remaining bits of the
 address identify a particular network interface and are referred to as the
 interface ID.
Here’s a diagram that shows how these parts fit together:
| 48 bits | 16 bits | 64 bits |
+------------------------+-----------+----------------------------+
| prefix | subnet ID | interface ID |
+------------------------+-----------+----------------------------+
/ \
| +------------------------------------\
| 3bits | 9bits | 12-20bits | 16-24bits |
+----------+----------+--------------+--------------------------+
| IETF | IANA | RIR | RIR or ISP |
+----------+----------+--------------+--------------------------+
As you can see in the diagram, the 48-bit prefix is made up of
 several parts. As previously mentioned, the first three bits are assigned
 by IETF to indicate “Global Unicast Space.” The next nine bits are
 assigned by IANA to a particular RIR (for example, 2620::/12 is assigned
 to ARIN, the American Registry for Internet Numbers). The RIR then assigns
 prefixes to ISPs and end users ranging from 24 to 48 bits (the RIR
 controls between 12 and 36 bits). Finally, in an ISP’s address space, the
 ISP can assign the bits after its RIR-assigned prefix up to the /48
 allocated to each customer end site.
Coincidentally, Movie University just arranged to get IPv6
 connectivity from our ISP. The ISP assigned us a /48-sized IPv6 network,
 2001:db8:cafe::/48, which we’ll subnet using the scheme just described
 into /64-sized subnetworks.
Note
What’s this fe80:: address?
If you’re poking around on a Unix or Linux system with
 ifconfig, netstat or the like,
 you may notice that your host’s network interfaces already have IPv6
 addresses assigned to them, starting with the quartet “fe80.” These are
 link-local scoped addresses, derived automatically from the interfaces’
 hardware addresses. The link-local scope is significant—you can’t access
 these addresses from anywhere but the local subnet, so don’t use them in
 delegation, masters substatements, and the like.
 Use global unicast addresses assigned to the host instead. You probably
 shouldn’t even use link-local addresses in the configuration of
 resolvers on the same subnet if there’s any chance that those resolvers
 will move (e.g., if they’re on laptops or other mobile devices).

IPv6 Forward and Reverse Mapping

Clearly, DNS’s A record won’t accommodate IPv6’s 128-bit addresses;
 an A record’s record-specific data is a 32-bit address in dotted-octet
 format.
The IETF came up with a simple solution to this problem, described
 in RFC 1886. A new type of address record, AAAA, was used to store a
 128-bit IPv6 address, and a new IPv6 reverse-mapping domain,
 ip6.int, was introduced. This solution was
 straightforward enough to implement in BIND 4. Unfortunately, not everyone
 liked the simple solution, so they came up with a much more complicated
 one. This solution introduced the new A6 and DNAME records and required a
 complete overhaul of the BIND name server to implement. Then, after much
 acrimonious debate, the IETF decided that the new A6/DNAME scheme involved
 too much overhead, was prone to failure, and was of unproven usefulness.
 At least temporarily, they moved the RFC that describes A6 records off the
 IETF standards track to experimental status, deprecated the use of DNAME
 records in reverse-mapping zones, and trotted old RFC 1886 back out.
 Everything old is new again.
For now, the AAAA record is the way to handle IPv6 forward mapping.
 The use of ip6.int is deprecated, however, mostly for
 political reasons; it’s been replaced by
 ip6.arpa.

AAAA and ip6.arpa

The AAAA (pronounced “quad A,” not “ahh!”) record, described in RFC
 1886, is a simple address record with record-specific data that’s four
 times as long as an A record, hence the four As in the record type. The
 AAAA record takes as its record-specific data the textual format of an
 IPv6 address, exactly as described earlier. So for example, you’d see AAAA
 records like this one:
ipv6-host IN AAAA 2001:db8:1:2:3:4:567:89ab
As you can see, it’s perfectly okay to use shortcuts in the IPv6
 address, including dropping leading zeroes from quartets and replacing one
 or more contiguous quartets of all zeroes with ::.
RFC 1886 also established ip6.int, now replaced
 by ip6.arpa, a new reverse-mapping name space for
 IPv6 addresses. Each level of subdomain under
 ip6.arpa represents four bits of the 128-bit address,
 encoded as a hexadecimal digit just like in the record-specific data of
 the AAAA record. The least significant (lowest-order) bits appear at the
 far left of the domain name. Unlike the format of IPv6 addresses in AAAA
 records, omitting leading zeros is not allowed, so there are always 32
 hexadecimal digits and 32 levels of subdomain below
 ip6.arpa in a domain name corresponding to a full
 IPv6 address. The domain name that corresponds to the address in the
 previous example is:
b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa.
These domain names have PTR records attached, just as the domain
 names under in-addr.arpa do:
b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.8.b.d.1.0.0.2.ip6.arpa. IN PTR
mash.ip6.movie.edu.

Adding AAAA Records to Forward-Mapping Zones

A and AAAA records can coexist side-by-side in any forward-mapping
 zone. So, for example, if your host has both an IPv4 and an IPv6 address
 (commonly called a “dual-stack” host), you can attach both A and AAAA
 records to its domain name:
suckerpunch IN A 192.249.249.111
 IN AAAA 2001:db8:cafe:f9::d3
However, you should be careful with that configuration, at least for
 the time being. Some current resolvers will always look up AAAA records
 before A records, even if the host running the resolver lacks the ability
 to communicate with all IPv6 addresses (for example, the host only has a
 link-local IPv6 address, or uses some transition technology that gives it
 limited IPv6 connectivity). If you attach both A and AAAA records to a
 single domain name, as in the example above, a user of one of these broken
 resolvers would need to wait for his connection to the IPv6 address to
 time out before successfully connecting to the IPv4 address, which could
 take as long as a few minutes (see in Chapter 2 for a
 mechanism to help you deal with this).
Until these broken resolvers are fixed, it’s prudent to attach A and
 AAAA records to different domain names, at least for hosts offering
 services:
suckerpunch IN A 192.249.249.111
suckerpunch-v6 IN AAAA 2001:db8:cafe:f9::d3
If you like the aesthetics better, you can use “v6” as a label in
 the domain name instead of as a suffix to the hostname:
suckerpunch.v6 IN AAAA 2001:db8:cafe:f9::d3
Note that this doesn’t require that you create a new subzone called
 v6.movie.edu; a subdomain in the same zone will do
 nicely.

IPv6 Reverse-Mapping Zones

If you use the standard IPv6 subnetting scheme shown in the diagram
 in , the reverse-mapping zones that correspond to your
 subnets will have 18 labels. For example, the subnet that
 suckerpunch.v6.movie.edu is on,
 2001:db8:cafe:f9::/64, would correspond to the reverse-mapping zone
 9.f.0.0.e.f.a.c.8.b.d.0.1.0.0.2.ip6.arpa. Remember
 that DNS is case-insensitive, so we could also have called the zone
 9.F.0.0.E.F.A.C.8.B.D.0.1.0.0.2.IP6.ARPA or even
 9.F.0.0.e.F.a.C.8.b.D.0.1.0.0.2.iP6.aRpA, if we’d
 been feeling punchy. They all would have handled reverse mapping of IPv6
 addresses just as well.
As with IPv4 reverse-mapping zones, IPv6 reverse-mapping zones
 mostly contain PTR records. And as with any zone, they must contain one
 SOA record and one or more NS records. Here’s what the beginning of that
 zone looks like:
$TTL 1d
@ IN SOA terminator.movie.edu. hostmaster.movie.edu. (
 2011030800 ; Serial number
 1h ; Refresh (1 hour)
 15m ; Retry (15 minutes)
 30d ; Expire (30 days)
 10m) ; Negative-caching TTL (10 minutes)

 IN NS terminator.movie.edu.
 IN NS wormhole.movie.edu.

3.d.0.0.0.0.0.0.0.0.0.0.0.0.0.0 PTR suckerpunch.v6.movie.edu.
4.d.0.0.0.0.0.0.0.0.0.0.0.0.0.0 PTR super8.v6.movie.edu.
Here’s hoping that most of your hosts will use dynamic update to
 register their own AAAA and PTR records, or else you’re going to wear out
 the period key on your keyboard.
If you’re going to add a lot of PTR records to an IPv6
 reverse-mapping zone by hand, it’s a good idea to make liberal use of the
 $ORIGIN control statement. For example, you could rewrite those last two
 PTR records as:
$ORIGIN 0.0.0.0.0.0.0.0.0.0.0.0.0.0.9.f.0.0.e.f.a.c.8.b.d.0.1.0.0.2.ip6.arpa.
3.d PTR suckerpunch.v6.movie.edu.
4.d PTR super8.v6.movie.edu.
The zone statement we added to the
 named.conf file on terminator to
 configure it as the primary name server for the reverse-mapping zone looks
 like this:
zone "9.f.0.0.e.f.a.c.8.b.d.0.1.0.0.2.ip6.arpa" {
 type master;
 file "db.2001:db8:cafe:f9";
};
Of course, you can name the zone data file whatever you like, but I
 suggest embedding the subnet’s prefix in there somewhere.
Warning
It’s probably best to avoid the use of the $GENERATE control
 statement in IPv6 reverse-mapping zones. Figuring out the right syntax
 to use to generate PTR records for such zones is tricky, and it’s easy
 to create so many PTR records that you can cause your name server to run
 out of memory.

Delegation and Reverse-Mapping Zones

You handle delegation with IPv6 reverse-mapping zones just as you
 would with IPv4 reverse-mapping zones—except it’s easier in one important
 respect. Those of you unfortunate enough to employ IPv4 subnet masks that
 don’t end on an octet boundary (e.g. /8, /16, and /24) wind up with either
 more than one reverse-mapping zone per subnet or multiple subnets per
 reverse-mapping zone. Those of you with subnets smaller than a /24 may
 even be forced to follow RFC 2317, which is really unfortunate.
With IPv6’s standard subnetting scheme, each subnet can contain a
 whopping 264 addresses, and you usually get
 over 65,000 subnets (assuming your ISP or RIR assigns a full /48 to you).
 Consequently, you probably won’t find yourself tempted to try to use a
 non-aligned subnet mask to make a subnet just large enough to accommodate
 the connected hosts. You’ll create a /48-sized reverse-mapping zone for
 your entire IPv6 network, and if necessary can delegate /64-sized
 subdomains from it.
For Movie University’s /48, 2001:db8:cafe::/48, the corresponding
 reverse-mapping zone is
 e.f.a.c.8.b.d.0.1.0.0.2.ip6.arpa. If we needed to
 delegate the 2001:db8:cafe:f9::/64
 subnet, introduced earlier, to a different set of name servers, we
 could add delegation like so:
$TTL 1d
@ IN SOA terminator.movie.edu. hostmaster.movie.edu. (
 2011030800 ; Serial number
 1h ; Refresh (1 hour)
 15m ; Retry (15 minutes)
 30d ; Expire (30 days)
 10m) ; Negative-caching TTL (10 minutes)

 IN NS terminator.movie.edu.
 IN NS wormhole.movie.edu.

9.f.0.0 IN NS adjustmentbureau.movie.edu.
 IN NS rango.movie.edu.
Of course, no glue addresses are necessary, because the domain names
 of the name servers aren’t below the delegation point.

Built-In Empty Reverse-Mapping Zones

There are quite a few IPv6 addresses and networks that serve special
 purposes. For example, IPv6, like IPv4, has an unspecified address (used
 by uninitialized network interfaces) and a loopback address, as well as
 networks for link-local addresses and more. The latest versions of BIND 9
 include built-in empty versions of the reverse-mapping zones that
 correspond to these addresses and networks. The zones are empty so that
 your local BIND name server will respond to any queries to reverse map
 these addresses immediately with a negative answer, without forwarding
 that query off to the Internet to another name server just to get the same
 negative answer or no answer at all.
The table below lists the built-in reverse-mapping zones, the
 functions of the addresses and networks they map to, and the rough
 equivalent in IPv4:
	Reverse-mapping Zone
 Name
	Function
	IPv4
 Equivalent

	0.ip6.arpa
	Unspecified IPv6
 address
	0.0.0.0

	1.0.ip6.arpa
	IPv6 Loopback
 Address
	127.0.0.1

	8.b.d.0.1.0.0.2.ip6.arpa
	IPv6 Documentation
 Network
	192.0.2/24

	d.f.ip6.arpa
	Unique Local
 Addresses
	10/8, etc. (RFC
 1918)

	8.e.f.ip6.arpa
	Link-Local
 Addresses
	169.254/16

	9.e.f.ip6.arpa
	Link-Local
 Addresses
	169.254/16

	a.e.f.ip6.arpa
	Link-Local
 Addresses
	169.254/16

	b.e.f.ip6.arpa
	Link-Local
 Addresses
	169.254/16

BIND is smart enough to notice if you’ve already configured your own
 version of one of these reverse-mapping zones (even if the zone isn’t an
 authoritative zone, such as a forward or stub zone), so you can easily
 override BIND’s empty zones. To disable individual built-in empty zones
 without creating explicit zone statements for them,
 use the disable-empty-zone substatement, which takes
 as an argument the domain name of the zone to disable:
options {
 disable-empty-zone "d.f.ip6.arpa";
};
To disable all built-in empty zones, you can use the
 empty-zones-enable substatement. By default, of
 course, they’re enabled, so
options {
 empty-zones-enable no;
};
will disable them. You can use
 disable-empty-zone and
 empty-zones-enable as either
 options or view
 substatements.

Chapter 2. BIND on IPv6

Modern BIND 9 name servers include complete support for IPv6, which
 means not only handling queries that ask for the IPv6 addresses of a given
 domain name, but also responding to those queries over IPv6, as well as
 querying other name servers over IPv6.
Listening for Queries

By default, BIND 9 name servers won’t listen for queries that arrive
 on an IPv6 interface. To tell the name server to listen on an IPv6
 interface, use the listen-on-v6 substatement. The
 simplest form of this substatement is:
options {
 listen-on-v6 { any; };
};
which instructs the name server to listen for queries on any IPv6
 network interfaces configured on the host. If you need to be more
 selective, you can specify a particular interface or particular
 interfaces:
options {
 listen-on-v6 { 2001:db8:cafe:1::1; 2001:db8:cafe:2::1; };
};
You can even negate entries in the list and specify entire networks,
 in which case the name server will listen on any interface on the matching
 network. If you need your name server to listen on a port other than 53
 (the default), specify it immediately after
 listen-on-v6. Here’s an example that incorporates all
 of these:
options {
 listen-on-v6 port 5353 { !2001:db8:cafe:1::1; 2001:db8:cafe::/64; };
};
This configures the name server to listen on port 5353 on all
 interfaces with IPv6 addresses on the network 2001:db8:cafe::/64 (that is,
 the Movie U. IPv6 network) except the address 2001:db8:cafe:1::1.
If you need to have your name server listen on multiple ports at the
 same time, just use multiple listen-on-v6
 substatements. You can only use listen-on-v6 as an
 options substatement, since it controls the behavior
 of the entire named process.

Sending Queries

Once you’ve configured a name server to listen on an IPv6 interface,
 the name server will automatically query other name servers over IPv6 when
 necessary. The source IP address of these queries will depend on which
 interface the route to the queried name server points through. To change
 this behavior, use the query-source-v6
 substatement.
query-source-v6 uses a syntax that is—somewhat
 frustratingly—different from that of listen-on-v6.
 The name server’s default behavior, using whichever source IPv6 address a
 route points through and whichever query port suits it, is equivalent to
 this substatement:
options {
 query-source-v6 address * port *;
};
To tell the name server to use a particular address, simply replace
 the * after the address keyword with a single IPv6
 address, like so:
options {
 query-source-v6 address 2001:db8:cafe:1::1;
};
As with listen-on-v6,
 query-source-v6 can only be used as an
 options substatement.
You can also specify that the name server use a particular source
 port in outgoing queries—but you shouldn’t. This defeats the name server’s
 query port randomization, which is a very important weapon against
 cache-poisoning attacks.

More on Query Port Randomization

Ever since the discovery of the Kaminsky vulnerability, BIND name
 servers have sent queries from random ports to make it more difficult to
 spoof responses to those queries. With random query ports, a would-be
 spoofer must guess which port to send a spoofed response to. And by
 default, BIND 9 chooses its random query ports from a very large pool:
 from port 1024 to port 65535.
If you need to tell the name server not to use a particular query
 port—for example, because certain ports are blocked by your firewall—use
 the avoid-v6-udp-ports substatement, which takes a
 list of ports as its argument:
options {
 avoid-v6-udp-ports { 1024; 1025; };
};
You can also specify the list of ports to avoid as a range:
options {
 avoid-v6-udp-ports { range 1024 1025; };
};
If for whatever reason you need to restrict the range of ports BIND
 uses to one smaller than the default, use the
 use-v6-udp-ports substatement, which takes the range
 as an argument:
options {
 use-v6-udp-ports { range 1024 16727; };
};
Again, be very careful, since restricting the range too much will
 limit the effectiveness of query port randomization.

Forcing the Use of a Particular Protocol

Occasionally, you may want to force a name server not to use IPv4 or
 IPv6 despite the fact that the host it’s running on has dual stacks. For
 example, you may know that the host
 isn’t capable of reaching the entire IPv6 Internet because of limitations
 in the transition technology you use. In situations like this, you can
 tell the name server to use only IPv4 or only IPv6 with the
 −4 and −6 command-line options,
 respectively.
% named −4
tells the name server to use only IPv4, while
% named −6
obviously, tells the name server to use only IPv6.

IPv6 Masters and Slaves

Of course, BIND supports zone transfers over IPv6, too. To configure
 a slave name server to transfer a zone from its master using IPv6, just
 specify the master’s IPv6 address in the zone’s
 masters substatement:
zone "movie.edu" {
 type slave;
 masters { 2001:db8:cafe:1::1; };
 file "bak.movie.edu";
};
To make this more readable, I suggest using the new
 masters statement. masters lets
 you assign a name to a list of master name servers, and then refer to that
 name in zone statements. Even if the list consists of
 just a single master name server, giving it a name will make it much
 easier to identify:
masters terminator.movie.edu { 2001:db8:cafe:1::1; };

zone "movie.edu" {
 type slave;
 masters { terminator.movie.edu; };
 file "bak.movie.edu";
};
If you want to specify a TSIG key or even an alternate port on the
 master name server to transfer from, you can specify those in the
 masters statement:
masters terminator-and-wormhole {
 2001:db8:cafe:1::1 key tsig.movie.edu;
 2001:db8:cafe:2::1 port 5353 key tsig.movie.edu;
};
You can even use names defined in masters
 statements with stub zones.
Note that masters is a top-level statement: you
 can’t use it inside an options or
 view statement.

Other IPv6 Zone Transfer Controls

As you’d expect, given the thoroughness of the good folks at ISC who
 develop BIND, there are also IPv6 equivalents of the
 transfer-source and
 notify-source substatements, called, not
 surprisingly, transfer-source-v6 and
 notify-source-v6. These instruct the name server to
 use particular IPv6 source addresses when initiating zone transfers from
 master name servers or when sending NOTIFY messages to slave name servers.
 These can be useful when, for example, a master name server only allows
 zone transfers initiated from a particular IPv6 address but the slave has
 multiple IPv6 addresses[1], or when a slave only knows its master name server by a
 particular IPv6 address (and therefore ignores NOTIFY messages from other
 IPv6 addresses the master may have).
The default, of course, is to use the IPv6 address of whichever
 interface the route to the master or slave points through, which is the
 same as:
options {
 transfer-source-v6 *;
 notify-source-v6 *;
};
To initiate zone transfers or send NOTIFY messages only from a
 particular IPv6 address, simply replace * with that address, like
 this:
options {
 transfer-source-v6 2001:db8:cafe:1::1;
 notify-source-v6 2001:db8:cafe:1::1;
};

[1] But they really ought to use TSIG to secure zone transfers, not
 IP address-based ACLs.

IPv6 Networks and Addresses in ACLs

To support IPv6, access control lists (ACLs) were extended to allow
 the specification of IPv6 addresses. Specifying IPv6 addresses in ACLs
 works as you’d expect it to:
acl Movie-U {
 2001:db8:cafe::/48;
};

acl campus-subnets {
 2001:db8:cafe:1::/64;
 2001:db8:cafe:2::/64;
};
You can, of course, mix IPv4 and IPv6 in the same ACL:
acl terminator {
 2001:db8:cafe:1::1;
 192.249.249.1;
};
And you can negate entries, too, to prevent matches:
acl all-subnet-but-terminator {
 !2001:db8:cafe:1::1;
 2001:db8:cafe:1::/64;
};
The built-in localhost and
 localnets ACLs have also been enhanced:
 localhost now includes all of the host’s IPv6
 addresses as well as its IPv4 addresses. (Note that this typically
 includes both a link-local address and a global unicast address on a name
 server configured to run over IPv6.) localnets
 includes IPv4 and IPv6 networks connected to the host, providing the
 operating system supports determining the prefix length of the host’s IPv6
 addresses. If it doesn’t, localnets includes locally
 connected IPv4 networks but just the host’s IPv6
 addresses.
Especially with IPv6, I encourage you to define and use ACLs with
 intuitive names to make your named.conf files more
 readable. There’s a tremendous difference between this:
allow-query {
 192.249.249/24;
 192.253.253/24;
 2001:db8:cafe:1::/64;
 2001:db8:cafe:2::/64;
};
and this:
allow-query {
 movie-u-internal-networks;
};

Registering IPv6 Name Servers

Once you’ve set up an IPv6 name server that’s authoritative for one
 or more zones, you may want to add the new IPv6 address to those zones’
 delegation information. That will require that your parent support
 registration of IPv6 addresses for name servers. Almost all top-level
 domains, such as com, net, and
 org and most large country-code top-level domains,
 such as uk and de, support IPv6
 addresses for name servers. In most cases, however, you don’t deal
 directly with the administrators of these domains, but rather work through
 an intermediary called a registrar. Unfortunately,
 not all registrars support registration of IPv6 addresses. If yours
 doesn’t, you may have no choice but to transfer your zones to a registrar
 that does, or at least threaten to if they don’t get their act
 together.
The actual process you use to register a name server’s IPv6 address
 varies depending on the registrar, but most good registrars provide
 reasonably intuitive web-based interfaces for managing delegation
 information and allow you to simply enter an IPv6 address there.
If your parent zone is managed by someone else in your
 organization—say a network administrator at your company’s corporate
 headquarters—ask them how they’d like the new address submitted. It may be
 as easy as sending them email.
For the time being, while IPv6 is still catching on, make sure that
 you register both IPv4 and IPv6 addresses for your name servers. If you
 don't have any IPv4–speaking name servers, most recursive name servers on
 the Internet won't be able to resolve any of your domain names.

Delegating to IPv6 Name Servers

If you manage a parent zone (that is, you’re the network
 administrator at your company’s corporate headquarters mentioned earlier),
 the administrators of your subzones may ask you to add IPv6 addresses to
 their delegation. Doing so is straightforward.
Say the network administrator of our computer-generated imagery
 department, cgi.movie.edu, has just set up a new IPv6
 network and wants us to add his name servers’ new IPv6 addresses to his
 delegation. Currently, his delegation looks like this:
cgi.movie.edu. IN NS avatar.cgi.movie.edu.
cgi.movie.edu. IN NS tron.cgi.movie.edu.

avatar.cgi.movie.edu. IN A 192.249.249.169
tron.cgi.movie.edu. IN A 192.253.253.169
He’s just set up the IPv6 subnets 2001:db8:cafe:10::/64 and
 2001:db8:cafe:11::/64, so after adding AAAA records for the two hosts, the
 delegation looks like this:
cgi.movie.edu. IN NS avatar.cgi.movie.edu.
cgi.movie.edu. IN NS tron.cgi.movie.edu.

avatar.cgi.movie.edu. IN A 192.249.249.169
 IN AAAA 2001:db8:cafe:10::2
tron.cgi.movie.edu. IN A 192.253.253.169
 IN AAAA 2001:db8:cafe:11::2
It’s worth reiterating here that glue A or AAAA records are
 necessary in delegation only when a
 subdomain is delegated to a name server that ends in the name of the
 subdomain (as tron.cgi.movie.edu ends in
 cgi.movie.edu). If that’s not true, glue records
 aren’t needed.

Server Statements for IPv6 Name Servers

If you need to tweak the way your name server communicates with a
 particular remote name server, you use the server
 statement. The server statement now supports IPv6 addresses, too, so if
 you wanted to tell your name server to use the TSIG key
 movie.edu.key when communicating with
 terminator.movie.edu over IPv6, you could use the
 following server statement:
server 2001:db8:cafe:1::1 {
 keys { movie.edu.key; };
};
And remember that the server statement now (since at least BIND
 9.5.0) accepts the specification of an entire network as an argument, so
 you can configure how your name
 server communicates with a whole set of name servers. For
 example, to tell your name server not to query any of the name servers on
 the Movie U. IPv6 network, you could use this server statement:
server 2001:db8:cafe::/48 {
 bogus yes;
};
But why would you ever want to do that?
For a more complete list of server
 substatements, see DNS and BIND.

Special Considerations

Handling “Monolingual” Name Servers

For the foreseeable future, we’ll run both the IPv4 and IPv6
 protocols in parallel on the Internet. While today, the vast majority of
 zones are served by name servers with only IPv4 connectivity, some
 day—hopefully sooner rather than later—we’ll see zones served only by
 IPv6 name servers. Either kind of zone introduces an interoperability
 challenge, though: how can a recursive name server with only IPv6
 connectivity resolve a domain name in a zone served only by IPv4 name
 servers? And what about the converse?
BIND 9 allows you to configure a sort of “protocol forwarder”
 called a dual-stack server for these poor
 monolingual recursors. When a recursor needs to look up data in a zone
 served only by name servers that don’t speak the same protocol, it
 simply forwards that query to the dual-stack server and waits for a
 response. (The forwarded query is recursive, otherwise the name server
 doing the forwarding might receive a referral in reply, which wouldn’t
 help much.)
The basic syntax is similar to that used to configure
 forwarders:
dual-stack-servers { 192.249.249.1; 192.249.249.3; };
You can also specify the dual-stack servers by domain name, which
 is a nice change:
dual-stack-servers {
 terminator.movie.edu;
 wormhole.movie.edu;
};
Just make sure your name server can resolve the domain names of
 the dual-stack servers to addresses with the one protocol it
 speaks.
As a best practice, however, it’s a good idea to run your name
 servers on dual-stack hosts whenever possible and to use
 dual-stack-servers only when you have no other choice.

Handling Broken Resolvers

Including support for IPv6 in a resolver is laudable. Preferring
 IPv6 addresses when they’re available is admirably progressive, too. But
 some resolvers will look up AAAA records even though the underlying
 operating system can’t really use them. Maybe the host uses a tunneling
 configuration that gives it limited IPv6 connectivity, for example. When
 the resolver returns the IPv6 address, and some client software tries to
 connect to it, it can take several minutes for the client to fall back
 to IPv4. Worse, the software can incur this delay for every connection
 it makes—once for each image that appears on a web page, for
 example.
Thankfully, these situations are fairly rare. Estimates from
 Google and Yahoo! suggest that these resolvers run on between 0.05% to
 0.078% of hosts on the Internet. But while that may not sound like a
 lot, when you’re dealing with a user base as large as theirs, it
 represents hundreds of thousands of users.
BIND versions 9.7.0 and later include a filtering mechanism for
 accommodating these resolvers. Basically, the mechanism decides whether
 or not to return AAAA records to a resolver based on the protocol over
 which the resolver sent its query. If the query arrived over IPv6,
 that’s proof enough that the resolver—and the host it runs on—has IPv6
 connectivity. If the query arrived over IPv4, though, the filter tells
 the name server to lie and claim (for the resolver’s own protection, of
 course) that no AAAA records exist even for domain names that really do
 own them. Presumably the resolver then goes on to request plain old A
 records.
This mechanism is somewhat controversial. Many members of the DNS
 community don’t like the idea of lying to resolvers. Moreover, lying can
 break DNSSEC validation. So the Internet Systems Consortium, which
 develops BIND, makes you jump through an extra hoop to use the feature:
 you need to compile the name server with the -enable-filter-aaaa
 option. The implicit message is, “Don’t use this unless you know what
 you’re doing.”
If compiled with that option, the name server will let you specify
 the filter-aaaa-on-v4 options substatement, which
 takes a simple yes or no as an
 argument:
options {
 filter-aaaa-on-v4 yes;
};
You can also use filter-aaaa-on-v4 as a
 view substatement, to apply only to that
 view.
By default, filter-aaaa-on-v4 doesn’t apply
 to queries with the DNSSEC OK (DO) bit set, because those suggest that
 the querier may perform DNSSEC validation. To override this, use
 break-dnssec as the argument:
options {
 filter-aaaa-on-v4 break-dnssec;
};
To apply filtering only to a subset of queriers, you can use the
 filter-aaaa options (and view)
 substatement, which allows you to specify the addresses of queriers
 whose responses should be filtered:
options {
 filter-aaaa-on-v4 yes;
 filter-aaaa { 192.249.249/24; };
};
Limiting the filter (if you use it at all) is a good precaution,
 since filtering can have unwanted side effects. For example, imagine an
 IPv6-only resolver configured to query a dual-stack recursive name
 server. If the recursive name server sent IPv4 queries to an
 authoritative name server that did filtering, it would always be told
 that no AAAA records existed, which would render the resolver unable to
 resolve any IPv6 addresses!

rndc and IPv6

rndc, the remote name daemon controller, can
 now communicate with a BIND name server over IPv6. This usually requires
 configuration on both the client (i.e., rndc) side
 and the server (named) side.
By default, the name server will only accept connections from
 rndc on the host’s IPv4 and IPv6 loopback addresses,
 127.0.0.1 and ::1, respectively. To tell the name server to listen on all
 of the host’s IPv6 addresses, specify the IPv6 wildcard address, ::, in
 the control statement:
controls {
 inet ::
 allow { localnets; }
 keys { rndc-key; };
};
You can also specify a single address to listen on:
controls {
 inet 2001:db8:cafe:1::1
 allow { localnets; }
 keys { rndc-key; };
};
Though not required, it’s always a good idea to limit incoming
 connections to a small set of addresses using an IP address-based ACL, and
 it’s critical to use a key to secure the control channel.
To tell rndc to connect to a host’s IPv6
 address, you can specify the address as the argument to the
 -s option:
% rndc -s 2001:db8:cafe:1::1 reload
Of course, if there’s a domain name that points to that address, you
 can use that as the option argument instead.

Chapter 3. Resolver Configuration

Configuring a resolver to query a name server over IPv6 is a piece of
 cake—assuming the resolver supports IPv6! You can just plug the IPv6 address
 of a recursive name server into the
 resolver. On a Unix-ish operating system, that’s usually done in the
 resolv.conf file with a nameserver
 directive:
nameserver 2001:db8:cafe:1::1
If the resolver is on the same host as a recursive name server, you
 can use the IPv6 loopback address, of course:
nameserver ::1
Mac OS X

With Mac OS X, resolver configuration is done in System Preferences.
 Click on System Preferences, then on Network (under
 the Internet & Wireless category). To configure the name servers you
 use when connected via AirPort, click on AirPort in the list of network
 interfaces on the left, then click on the Advanced... button at the lower
 right. In the window that appears, click on the DNS tab. The resulting
 window should look like this:
[image: image with no caption]

If your computer has been assigned a list of name servers by a DHCP
 server, you may find the DNS Servers: section populated. You can override
 this list by clicking the + button below the list, though. Enter one or
 more IPv6 addresses to query the name servers’ IPv6 addresses.
To configure the name servers you use when connected to the Internet
 via another network interface, such as your Mac’s Ethernet interface,
 simply choose Ethernet from the Network panel.

Windows

With Windows 7, start the Control Panel. Click on Network and
 Internet, then on Network and Sharing Center. Find the Local Area
 Connection and click on it. The Local Area Connection Properties window
 should appear. It looks like this:
[image: image with no caption]

Click on Internet Protocol Version 6 (TCP/IPv6); the Internet
 Protocol Version 6 (TCP/IPv6) Properties window will appear:
[image: image with no caption]

If you click on Use the following DNS server addresses, you can
 specify the IPv6 addresses of up to two recursive name servers.
As with Mac OS X, to configure the name servers your resolver
 queries when using a different network interface, simply choose that
 interface instead of Local Area Connection.
After reconfiguring your resolver to use IPv6, it’s a good idea to
 verify that DNS resolution still works with a tool such as
 dig or nslookup. See the chapter
 on troubleshooting later in this book for details.

Dynamic Resolver Configuration

IPv6 supports several methods for dynamically configuring a host’s
 IP address and other network parameters:
	A “traditional” method, using DHCPv6, the IPv6 version of
 DHCP

	Stateless Address Autoconfiguration, or SLAAC, in which a host
 uses Router Advertisements to assemble an IP address appropriate for
 use on the local network and to determine other network
 parameters

	A hybrid method, in which a host uses SLAAC for address
 assignment but DHCPv6 to determine other network parameters

In the first and last methods, resolver configuration involves
 setting the right DHCPv6 options. In the second, it requires setting up
 the correct Router Advertisement options.
But wait—how does a host choose whether to use SLAAC, DHCPv6, or
 both? A router tells it its options with flags in its Router
 Advertisements:
	The “M” flag, for “Managed Address Configuration,” tells hosts
 that DHCPv6 is available for both address assignment and network
 parameters (including resolver configuration).

	The “A” flag, for “Autonomous Address Configuration,” tells
 hosts that SLAAC is available for address assignment and network
 parameters (possibly including resolver configuration).

	The “O” flag, for “Other Stateful Configuration,” tells hosts
 that DHCPv6 is available for network parameters other than address
 assignment (that is, to be used together with SLAAC in the hybrid
 method described earlier).

Note that the host has a choice of methods to use and can use more
 than one. For example, a router may advertise the availability of both
 SLAAC and DHCPv6 for address assignment, and a host may get one IPv6
 address using SLAAC and another using DHCPv6. A host may also receive
 resolver configuration from both methods, and then merge them. Confusing,
 eh?
Resolver Configuration Using DHCPv6

IPv6 supports dynamic configuration of hosts using DHCPv6, and
 naturally you can use DHCPv6 to configure a resolver. DHCPv6 has new
 resolver configuration options, though—you can’t use the same old DHCPv4
 options to configure your resolver over DHCPv6. The new options
 are:
	Option
 Number
	ISC Option
 Name
	Option
 Argument

	23
	dhcp6.name-servers
	Comma-separated list of
 IPv6 addresses

	24
	dhcp6.domain-search
	Comma-separated list of
 domain names

And here’s a snippet from an ISC DHCP server’s
 dhcpd.conf file to show you how the options are
 set:
option dhcp6.name-servers 2001:db8:cafe:1::1, 2001:db8:cafe:2::1;
option dhcp6.domain-search "cgi.movie.edu","movie.edu";
The ability to set a search list via DHCP is new; while RFC 3397
 introduced a DHCPv4 option to do that back in 2002, it was never widely
 supported by DHCP clients. DHCPv6 has supported configuration of the
 search list from the beginning, though, so all DHCPv6 clients should
 support it.
There’s another change in DHCPv6 worth mentioning. In IPv6, DHCP
 comes in two flavors: stateless and stateful. Stateful DHCPv6 is like
 DHCP on IPv4: a DHCP client can start with nothing but a MAC address and
 have an IP address plus other network configuration assigned. But
 stateless DHCPv6 is new and supports the hybrid method of configuring
 network stacks: a DHCP client that already has an IP address (e.g.,
 assigned using SLAAC) can retrieve network configuration
 excluding address assignment (which it doesn’t
 need) from a DHCPv6 server.

Resolver Configuration Using Router Advertisements

Router Advertisements originally didn’t contain any resolver
 configuration parameters, so although hosts could use SLAAC to configure
 most of their network stacks, they couldn’t configure their resolvers.
 For that, they needed to use stateless DHCPv6, which could provide the
 IPv6 addresses of recursive name servers, as well as other DNS-related
 parameters, such as a search list, as described in the last section. But
 this required that every IPv6 subnet be served by a DHCPv6 server, in
 many cases solely to provide resolver configuration.
Then RFC 6106 extended Router Advertisements to support the
 specification of the IPv6 addresses of recursive name servers as well as
 a DNS search list, eliminating the need for a DHCPv6 server in many
 cases.
The Router Advertisement option used to configure a resolver’s
 name servers is called RDNSS, for Recursive DNS Server. The option for
 configuring a resolver’s search list is called DNSSL, for DNS Search
 List. As the name suggests, Router Advertisements are sent by routers,
 so you would usually configure the options on those routers. And, of
 course, the particular syntax required would vary depending on the make
 of routers you ran.
I write “would” because RFC 6106 is very new (published in
 November 2010), so not much gear supports it yet, though there’s
 somewhat more support for RFC 5006, a precursor to RFC 6106. (RFC 5006
 introduced support for the RDNSS option but didn’t include a way to set
 a search list.) On the server side, Linux and various BSD operating
 systems have at least some support in rtadvd, the
 Router Advertisement daemon. On the client side, Mac OS X 10.7 (“Lion”)
 is rumored to support RFC 6106.
Here’s an example of configuring the RDNSS option in
 rtadvd.conf, the Linux version of
 rtadvd’s configuration file[2]:
interface eth0 {
 AdvSendAdvert on;
 prefix 2001:db8:cafe:1::/64 {
 AdvOnLink on;
 AdvAutonomous on;
 };
 rdnss 2001:db8:cafe:1::1 {
 };
};

[2] Note that the BSD operating systems use a substantially
 different syntax.

Chapter 4. DNS64

During the (likely very long) transition from IPv4 to IPv6, ISPs and
 other organizations will implement new networks that only support IPv6. For
 the foreseeable future, though, clients on those networks will still need
 access to services (e.g., websites) that don’t yet support IPv6. NAT64 and
 DNS64[3] are a pair of complementary transition technologies that help
 provide that access.
NAT64 is a function run on a dual-stack host. A NAT64 server accepts
 connections from clients that only speak IPv6 and then uses its own IPv4
 connectivity to communicate with IPv4-only servers on those clients’ behalf,
 then copies data between the IPv4 and IPv6 connections, effectively
 “bridging” the IPv4 and IPv6 networks. The clients don’t actually realize
 they’re connecting through NAT64—they’re led to believe that the IPv4-only
 servers they want to communicate with support IPv6 and that they’re talking
 directly to them.
How is that misdirection achieved? Through DNS—DNS64, in particular.
 The IPv6-only clients are configured to use one or more special name servers
 that support the DNS64 function. When one of these name servers receives a
 query from a client for AAAA (IPv6 address) records for some domain name, it
 looks for an answer, as it normally would. If it doesn’t find any such
 records, it tries looking up A records for the same domain name. If it finds
 one or more A records, it doesn’t return them to the client (which can’t use
 them, anyway, and wouldn’t accept them, since it asked specifically for AAAA
 records). It “synthesizes” an equal number of AAAA records from those A
 records, embedding the 32-bit IPv4 addresses in 128-bit IPv6 addresses. Now
 the client believes the server supports IPv6 and that it can communicate
 with it directly.
The client, then, tries to connect to one of these fictional—er,
 synthesized—IPv6 addresses. How does the NAT64 server intercept this
 traffic? Easy! The route to the network on which the synthesized IPv6
 address lies leads right to the NAT64 server. The NAT64 server terminates
 the IPv6 connection, extracts the embedded IPv4 address, and connects to the
 IPv4 server on the IPv6 client’s behalf. This process is illustrated in
 Figure 4-1.
[image: DNS64 and NAT64 at Work]

Figure 4-1. DNS64 and NAT64 at Work

BIND versions 9.8.0 and later support DNS64 with the dns64
 options substatement. dns64 supports the
 configuration of an IPv6 prefix to which the embedded IPv4 address is
 appended, as well as an optional suffix that is then appended to the IPv4
 address to complete the 128-bit address. (The prefix is often 96 bits long,
 in which case no suffix is required, or even possible.) Here’s a basic
 example:
dns64 64:ff9b::/96 {
 suffix ::;
};
::, an all-zeroes suffix, is the default, so you can leave that
 substatement out if you like.
Now, there are good reasons that you may not want to apply DNS64 to
 every querier. For instance, you may have a community of dual-stack clients
 on your network. When asked by an application to find the address of a
 server, many stub resolvers on dual-stack clients will send AAAA queries
 before they send A queries. With DNS64 enabled, such clients would never see
 the A records of IPv4-only servers; DNS64 would always return synthesized
 AAAA records to them, even though the clients were perfectly capable of using the servers’ A records. This,
 in turn, would shunt traffic through your NAT64 infrastructure
 unnecessarily.
The dns64 statement supports a
 clients substatement that allows you to select which
 clients the DNS64 function applies to. By default, DNS64 applies to all
 clients; that is:
dns64 64:ff9b::/96 {
 clients { any; };
};
But you can specify any ACL you like as an argument. Here’s an
 example:
dns64 64:ff9b::/96 {
 clients { 2001:db8:cafe:1::/64; };
};
As always, it’s a good idea to use named ACLs whenever possible for
 clarity.
There are also IPv4 networks that you may not want mapped into IPv6
 addresses by DNS64. For example, if you run a DNS64 function to give your
 IPv6-only clients access to the IPv4 Internet, you don’t want to embed any
 RFC 1918 addresses that name servers on the Internet might inadvertently
 return. To avoid that, use the dns64 mapped
 substatement. This dns64 statement would prevent DNS64
 from mapping 10/8 addresses, for example:
dns64 64:ff9b://96 {
 mapped { !10/8; any; };
};
Of course, RFC 1918 includes more than just 10/8.
Note
You may notice that I use the prefix 64:ff9b:://96 liberally in my
 DNS64 examples. That’s because that network is reserved for mapping IPv4
 addresses into IPv6, and it’s the default used by many NAT64
 implementations. You can use a different prefix if you prefer, but make
 sure it matches what’s configured on (and routed to) your NAT64 server,
 and choose it from some private IPv6 address space (there’s plenty of it)
 so it doesn’t interfere with routing to real IPv6 destinations. NAT64
 prefixes are restricted by RFC to /32s, /40s, /48s, /56s, /64s, or /96s.
 If you choose a /96, a suffix is superfluous, of course, but other prefix
 lengths allow the configuration of a suffix (though again, the suffix is
 optional, and defaults to ::). As with the prefix, make sure your NAT64
 server is configured with the same suffix.

Normally, DNS64 only applies to domain names that don’t have AAAA
 records. (If the domain name had one or more AAAA records, the name server
 would simply have returned them to the IPv6-only client.) But sometimes you
 may want the name server to ignore AAAA records that contain certain IPv6
 addresses and apply DNS64 to a domain name. In that case, you can use the
 exclude substatement, which allows you to specify one
 or more IPv6 networks or addresses whose presence DNS64 should ignore and
 synthesize new AAAA records anyway. Here’s an example:
dns64 64:ff9b::/96 {
 clients { 2001:db8:cafe:1::/64; };
 mapped { !10/8; any; };
 exclude { 64:ff9b::/96; };
};
This tells DNS64 to ignore any AAAA records that map to IPv6 addresses
 on the network 64:ff9b::/96 and to look up A records for those domain names
 and synthesize new AAAA records instead.
Authoritative Name Servers and DNS64

What I’ve described so far is DNS64 as performed by a recursive name
 server, but authoritative name servers can implement DNS64, too. In fact,
 if you configure your name server to do DNS64 and it’s also authoritative
 for one or more zones, it’ll apply DNS64 to queries in those zones by
 default, too. In this case, the name server synthesizes AAAA records from
 A records in zones for which it’s authoritative. (Of course, it’ll only do
 this if no AAAA records exist for the domain name.)
If you want to restrict DNS64 to recursive queries, you can use the
 recursive-only substatement:
dns64 64:ff9b::/96 {
 recursive-only yes;
};
The default is to apply DNS64 to both recursive and nonrecursive
 queries.

[3] NAT64 and DNS64 are pronounced as “NAT six four” and “DNS six
 four,” respectively—not “NAT sixty-four” and “DNS sixty-four.”

Interaction Between DNS64 and DNSSEC

After reading about DNS64, those of you who have already read
 DNS and BIND’s “Security” chapter may object: doesn’t
 the mechanism, when it’s working as designed, break
 DNSSEC? Yes, it sure can.
Imagine that a monolingual IPv6 client queries a recursive name
 server that supports DNS64 for AAAA records attached to a domain name in a
 signed zone. The recursive name server looks up AAAA records for the
 domain name and finds none. If the recursive name server is configured to
 perform DNSSEC validation and has a valid chain of trust to the zone in
 question, it will cryptographically validate the negative response from
 the authoritative name server. Surely it can’t lie to the client about an
 answer it has validated?
Actually, it can, and in many cases, the client won’t notice at all.
 That’s because most clients don’t perform validation themselves, but rely
 entirely on their recursive name servers for that.
As a safeguard, however, a BIND name server doesn’t synthesize a
 AAAA response if the DNSSEC OK (DO) flag was set in the query. In this
 case, the client querying the name server could be another name server
 configured to use it as a forwarder, and it might be
 configured to perform validation. That validation would fail on any
 synthesized AAAA record.
If you’re really hell-bent on rewriting even those responses, you
 can use the break-dnssec substatement:
dns64 64:ff9b://96 {
 break-dnssec yes;
};

DNS64 and Reverse Mapping

There’s one last detail of DNS64 worth mentioning: reverse mapping.
 If a client using a name server configured to perform DNS64 tries to
 reverse-map a synthesized IPv6 address, what happens? The name server in
 question responds with a CNAME record pointing the domain name used to
 reverse-map the synthesized IPv6 address (the one under
 ip6.arpa) to the domain name corresponding to the
 embedded IPv4 address (under in-addr.arpa). So if an
 A record pointing to 192.168.0.1 synthesizes a AAAA record pointing to
 64:ff9b::192.168.0.1 (or 64:ff9b::c0a8:1—same thing), the CNAME record
 looks like this:
1.0.0.0.8.a.0.c.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.b.9.f.f.6.4.0.0.ip6.arpa. CNAME
1.0.168.192.in-addr.arpa.
The result is exactly what you’d want: the synthesized IPv6 address
 reverse-maps to whichever domain name the embedded IPv4 address maps
 to!

Chapter 5. Troubleshooting

Troubleshooting IPv6-related DNS problems isn’t much different from
 troubleshooting other DNS problems. The main things you need to know are how
 to specify the IPv6 address of a name server to query and how to forward-map
 and reverse-map IPv6 addresses. I’ll show you how to use both
 nslookup and dig to perform these
 tasks.
There’s one important thing to keep in mind with either query tool:
 they default to using IPv4,
 which means that whether you type
 nslookup terminator.movie.edu or dig
 wormhole.movie.edu, the program
 will look up A records (that is, IPv4 addresses). You need to specify AAAA
 records explicitly to look up IPv6 addresses. Likewise, nslookup –
 terminator.movie.edu will send a query to the name server’s IPv4
 address, not its IPv6 address. With recent versions of
 dig, dig @terminator.movie.edu
 will query the name server’s IPv6 address first, assuming
 terminator.movie.edu owns a AAAA record.
nslookup

First, I’ll reiterate something we said in DNS and
 BIND: nslookup is not a great
 troubleshooting tool for a number of reasons. It insulates you from the
 details of the DNS message and is prone to displaying errors that are
 unrelated to the query you’re interested in, such as an inability to
 reverse-map the address of the name server it’s querying to a domain name.
 But nslookup is more prevalent than my preferred DNS
 troubleshooting tool, dig, so I’m obliged to cover
 it.
First, to query a name server over IPv6, you’ll need to use either
 nslookup’s server command or
 specify the server’s IPv6 address on the command line. Most people use
 nslookup’s interactive mode, which you can enter
 simply by typing nslookup:
% nslookup
>
nslookup displays the > prompt in
 interactive mode. By default, nslookup will read the
 local host’s resolv.conf file and query the first
 name server listed in the file, or if no name server is specified, will
 try querying a name server on the local host, as the local resolver would.
 To change to query a different name server over IPv6, use the
 server command:
% nslookup
> server 2001:db8:cafe:1::1
Default server: 2001:db8:cafe:1:1
Address: 2001:db8:cafe:1:1
You can also specify the server by its domain name, but if the
 domain name also points to an IPv4 address, nslookup
 will try to query that:
% nslookup
> server terminator.movie.edu
Default server: terminator.movie.edu
Address: 192.249.249.1
Whoops. Look at the Address line. For situations like this, it’s a
 good idea to have a special domain name that points only to the name
 server’s IPv6 address, like terminator-v6.movie.edu
 or terminator.v6.movie.edu. Then the
 server command will work nicely:
% nslookup
> server terminator.v6.movie.edu
Default server: terminator.v6.movie.edu
Address: 2001:db8:cafe:1::1
Note
Specifying the name server to query by domain name is a little
 dangerous, both because the name may not map to the address you expect
 (as in the example above) and because if you’re using a troubleshooting
 tool such as nslookup or dig,
 DNS is probably misbehaving anyway.
The last thing you want is to spend a lot of time troubleshooting
 a problem only to find that you’re not querying the name server you
 thought you were. So if you do specify the name server to query by name,
 double-check its address, and if in doubt, specify the name server by
 address instead.

In nslookup’s non-interactive mode, you can
 specify the server to query after you specify the domain name to look up.
 For example:
% nslookup -type=aaaa suckerpunch.movie.edu. terminator.v6.movie.edu.
If you want to specify the server to query but enter interactive
 mode, just use “-” in place of the domain name to query:
% nslookup - terminator.v6.movie.edu.
Finally, to forward-map and reverse-map IPv6 addresses, use the
 query types aaaa and ptr,
 respectively. Here’s how you’d look up
 suckerpunch.movie.edu’s IPv6 address:
% nslookup
> set q=aaaa
> suckerpunch.movie.edu.
Server: terminator.v6.movie.edu.
Address: 2001:db8:cafe:1::1#53

suckerpunch.movie.edu has AAAA address 2001:db8:cafe:f9::d3
>
And here’s how you’d reverse-map the address. Note that you don’t
 need to specify the query type explicitly—nslookup is
 smart enough to recognize the IPv6 address. You also can use the
 abbreviated form of the IPv6 address, dropping leading zeroes from
 quartets and using the :: shortcut:
% nslookup
> 2001:db8:cafe:f9::d3
Server: terminator.v6.movie.edu.
Address: 2001:db8:cafe:1::1#53

3.d.0.0.0.0.0.0.0.0.0.0.0.0.0.0.9.f.0.0.e.f.a.c.8.b.d.0.1.0.0.2.ip6.arpa name =
suckerpunch.movie.edu.
If you’re feeling masochistic, you could specify all 34 labels of
 the domain name that corresponds to the IPv6 address, in which case you
 must explicitly change the query type to ptr:
% nslookup
> set type=ptr
> 3.d.0.0.0.0.0.0.0.0.0.0.0.0.0.0.9.f.0.0.e.f.a.c.8.b.d.0.1.0.0.2.ip6.arpa.
Server: terminator.v6.movie.edu.
Address: 2001:db8:cafe:1::1#53

3.d.0.0.0.0.0.0.0.0.0.0.0.0.0.0.9.f.0.0.e.f.a.c.8.b.d.0.1.0.0.2.ip6.arpa name =
suckerpunch.movie.edu.
Of course, you can also do this from the command line, like
 so:
% nslookup -type=aaaa suckerpunch.movie.edu.
and
% nslookup 2001:db8:cafe:f9::d3

dig

The chief difference between nslookup and
 dig is that dig has no
 interactive mode: you specify everything at the command line. And
 dig is smart enough—in most cases—to differentiate
 between domain names and record types, so you can specify those in whichever order you like. To query a name server
 other than the first one in resolv.conf, type an @ followed by its
 domain name or IP address. As I mentioned earlier, if you use a
 domain name that owns both AAAA and A records, recent versions of
 dig will use the IPv6 address, so:
% dig @terminator.movie.edu. soa movie.edu.
has the same effect as
% dig @2001:db8:cafe:1::1 soa movie.edu.
To look up a AAAA record, just specify aaaa on
 the command line:
% dig aaaa suckerpunch.movie.edu.
or
% dig suckerpunch.movie.edu. aaaa
Either way, the output will look something like this:
; <<>> DiG 9.8.0 <<>> suckerpunch.movie.edu. aaaa
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 21059
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 5

;; QUESTION SECTION:
;suckerpunch.movie.edu. IN AAAA

;; ANSWER SECTION:
suckerpunch.movie.edu. 86400 IN AAAA 2001:db8:cafe:f9::d3

;; AUTHORITY SECTION:
movie.edu. 86400 IN NS terminator.movie.edu.
movie.edu. 86400 IN NS wormhole.movie.edu.

;; ADDITIONAL SECTION:
terminator.movie.edu. 86400 IN A 192.249.249.1
terminator.movie.edu. 86400 IN AAAA 2001:db8:cafe:1::1
wormhole.movie.edu. 86400 IN A 192.249.249.3
wormhole.movie.edu. 86400 IN A 192.253.253.3
wormhole.movie.edu. 86400 IN AAAA 2001:db8:cafe:2::1

;; Query time: 3 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Sun Mar 27 19:42:46 2011
;; MSG SIZE rcvd: 219
To reverse-map an IPv6 address, avail yourself of the handy
 -x command-line option, which takes an IPv6 address
 (rather than its equivalent 34-label domain name) as an argument:
% dig -x 2001:db8:cafe:f9::d3
One trick suggested by Owen DeLong, one of my technical reviewers,
 is to let dig do the hard work of creating the
 34-label owner name of an IPv6 PTR record for you. For example, rather
 than laboriously typing the owner name that corresponds to
 2620:0:930::400:933, you could simply run dig -x
 2620:0:930::400:933:
% dig -x 2620:0:930::400:933

; <<>> DiG 9.6.0-APPLE-P2 <<>> -x 2620:0:930::400:933
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 28788
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0

;; QUESTION SECTION:
;3.3.9.0.0.0.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.3.9.0.0.0.0.0.0.2.6.2.ip6.arpa. IN PTR
...
Then copy the owner name from the line below ;; QUESTION
 SECTION and paste it into your zone data file.
Like nslookup, dig digs
 the abbreviated form of the IPv6 address. If you want to do it the hard
 way, you’ll have to specify the PTR query type on the command line:
% dig ptr 3.d.0.0.0.0.0.0.0.0.0.0.0.0.0.0.9.f.0.0.e.f.a.c.8.b.d.0.1.0.0.2.ip6.arpa.

About the Author
Cricket Liu graduated from the University of California, Berkeley, that great bastion of free speech, unencumbered Unix, and cheap pizza. He joined Hewlett-Packard after graduation and worked for HP for nine years.
Cricket began managing the hp.com zone after the Loma Prieta earthquake forcibly transferred the zone's management from HP Labs to HP's Corporate Offices (by cracking a sprinkler main and flooding a Labs computer room). Cricket was hostmaster@hp.com for over three years, and then joined HP's Professional Services Organization to co-found HP's Internet Consulting Program.
Cricket left HP in 1997 to form Acme Byte & Wire, a DNS consulting and training company, with his friend Matt Larson. Network Solutions acquired Acme in June 2000, and later the same day merged with VeriSign. Cricket worked for a year as Director of DNS Product Management for VeriSign Global Registry Services.
Cricket joined Infoblox, a company that develops DNS and DHCP appliances, in March, 2003. He is currently their Vice President of Architecture.
Cricket, his wife, Paige, their son, Walt, and daughter, Greta, live in California with their two Siberian Huskies, Annie and Dakota.

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages834950.png
U Local Area Connection Properties. >3

e
Connect usng
‘@ ntel(R) PRO/1000 T Network Connection

This connecton uses the olowing tems:
P8 Gt foricrosot Netwrks

B00S Packet Schedder

153 Fic o Prrder Sharing for icrosoft Networks
- Intemet Protocol Version 6 (TCP/IPvE)

- Intemet Protocol Version 4 (TCP/IPv4)

- Lik-Layer Topology Discovery Mapper /0 Dver
4« LikLyer Topology Discovery Responder

[

Allows your compute o access resources on Microsoft
network.

o J e]

OEBPS/httpatomoreillycomsourceoreillyimages834943.jpg
R R R R RRRRRRERRBRRRREREEEDDDDREEDRw
DNS for the Next-Generation Internet

DNS & BIND
on IPv6

O’REILLY*® Cricket Liu

OEBPS/httpatomoreillycomsourceoreillyimages834952.png
You can get IPV6 settings assigned automatically if your network supports this capabilty.
Otherwise, you need to ask your network admiistrator for the appropriate [PV settings.

(@ Obtain an IPv6 address automatically
(©) Use the following IPv6 address:
1pvs s []

bt prfi ot [
et gateny []

© Obtain DNS server address automatically
Use the following DNS server addresses:

Preferred DNS server: D01dbsicafe: 1111

Alternate DNS server: ordbsicafei2il

Vaidate settings upon exit

OEBPS/httpatomoreillycomsourceoreillyimages834954.png
www.v4-only.example ns1.v4-only.example

1 Client sends query for www.v4-only.example/ARAA
to fecursive name server

2 Recursive name server queries name servr
for vé-only.example and gts no AAM records
infesponse:

3 Recursive name server synthesizes a
AAAA record to retum to client using
prefix and optional suffx

4 lient sends IPV6 packet tosynthesized Internet
IPv6 address, which routes o the
NAT64 server

Recursive

Name Server
fkunning DNS64
IPv4.

7 NAT64 server convertsthe packet o —)
IPv6 and returns o the lient @ 6

5 NAT64 server tranlates packet to
destination Pvd adress

6 [Pvd-only web server eturns the
response over P to NATG4 server

—

OEBPS/httpatomoreillycomsourceoreillyimages834948.png.jpg
[« >][Showall

G WiFi

Network

[Wi-Fi__TCP/IP | DNS | WINS 802.1X Proxies Hardware |
|
DN Servers: Search Domains:
12001:db8:cafe:1:1 movie.edu
| = IPva or IPY6 addresses +]=

comal | (06|

