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Preface



I’m sorry for writing this ebook.
Well, that’s not quite accurate. What I mean is, I’m sorry I didn’t
  have time to update DNS and BIND to include all this
  new IPv6 material. DNS and BIND deserves a sixth
  edition, but I’m afraid my schedule is so hectic right now that I just don’t
  have time to write it. Heck, I’m on a flight from Boston to Tampa as I write
  this. (Long flights are great for writing prefaces, not so great for writing
  books about Internet technologies. Though in-flight Internet access does
  help.)
This book is essentially all the material related to IPv6 that I would
  have included in the sixth edition of DNS and BIND (and
  will, once I get to it). It covers how DNS was extended
  to accommodate IPv6 addresses, both for forward-mapping and reverse-mapping.
  It describes how to configure a BIND name server to run on an IPv6 network
  and how to troubleshoot problems with IPv6 forward- and reverse-mapping. It
  even covers DNS64, a DNS-based transition technology that, together with a
  companion technology called NAT64, can help islands of IPv6-only speaking
  hosts communicate with IPv4 resources.
Audience



I wrote this book for DNS administrators who are rolling out IPv6 on
    their networks and who need to understand how to support IPv6 on those
    networks with DNS. This ebook covers the underlying theory, including the
    structure and representation of IPv6 addresses; the A, M, and O flags in
    Router Advertisements and what they mean to DNS; as well as the nuts and
    bolts, including the syntax of AAAA records and PTR records in the
    ip6.arpa reverse-mapping zone and the syntax and
    semantics of configuring a BIND name server.


Assumptions This Book Makes



This book assumes that you understand basic DNS theory and BIND
    configuration. It doesn’t explain what a resource record is or how to edit
    a zone data file, or remind you that you need to increment the serial
    number of the zone’s SOA record before reloading it (other than just
    now)—for that, I highly recommend DNS and BIND. But
    that shouldn’t surprise you.
The book doesn’t assume that you know anything
    in particular about IPv6, though.

Contents of This Book



This book is organized into five chapters as follows:
	Chapter 1, DNS and IPv6
	This chapter explains the motivation behind the move to IPv6
          and describes the structure and representation of IPv6 addresses. It
          also introduces the syntaxes of AAAA records and PTR records in the
          ip6.arpa IPv6 reverse-mapping zone and explains
          how to delegate subdomains of ip6.arpa
          zones.

	Chapter 2, BIND on IPv6
	This chapter describes how to configure BIND name servers to
          run on IPv6 networks, including how to configure IPv6 master and
          slave name servers, how to use IPv6 addresses and networks in ACLs,
          and how to register and delegate to IPv6-speaking name servers. The
          chapter also includes a section on special considerations that may
          arise because IPv6 connectivity is not yet pervasive.

	Chapter 3, Resolver Configuration
	This chapter shows how to configure popular stub resolvers
          (Linux/Unix, Mac OS X and Windows) to query IPv6-speaking name
          servers. It also covers dynamic configuration of resolvers using
          DHCPv6 and Router Advertisements.

	Chapter 4, DNS64
	This chapter explains the DNS64 transition technology, which
          allows clients with IPv6-only network stacks to communicate with
          IPv4 servers.

	Chapter 5, Troubleshooting
	This chapter describes how to use the common
          nslookup and dig
          troubleshooting tools to look up the IPv6 addresses of a domain name
          or reverse-map an IPv6 address to a domain name. It also covers how
          to query a name server’s IPv6 address.




Conventions Used in This Book



The following typographical conventions are used in this
    book:
	Plain text
	Indicates menu titles, menu options, menu buttons, and
          keyboard accelerators (such as Alt and Ctrl).

	Italic
	Indicates new terms, URLs, email addresses, filenames, file
          extensions, pathnames, directories, and Unix utilities.

	Constant width
	Indicates commands, options, switches, variables, attributes,
          keys, functions, types, classes, namespaces, methods, modules,
          properties, parameters, values, objects, events, event handlers, XML
          tags, HTML tags, macros, the contents of files, or the output from
          commands.

	Constant width
        bold
	Shows commands or other text that should be typed literally by
          the user.

	Constant width italic
	Shows text that should be replaced with user-supplied
          values.



Note
This icon signifies a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.


Using Code Examples



This book is here to help you get your job done. In general, you may
    use the code in this book in your programs and documentation. You do not
    need to contact us for permission unless you’re reproducing a significant
    portion of the code. For example, writing a program that uses several
    chunks of code from this book does not require permission. Selling or
    distributing a CD-ROM of examples from O’Reilly books does require
    permission. Answering a question by citing this book and quoting example
    code does not require permission. Incorporating a significant amount of
    example code from this book into your product’s documentation does require
    permission.
We appreciate, but do not require, attribution. An attribution
    usually includes the title, author, publisher, and ISBN. For example:
    “DNS and BIND on IPv6 by Cricket Liu (O’Reilly).
    Copyright 2011 Cricket Liu, 978-1-449-30519-2.”
If you feel your use of code examples falls outside fair use or the
    permission given above, feel free to contact us at
    permissions@oreilly.com.

Safari® Books Online



Note
Safari Books Online is an on-demand digital library that lets you
      easily search over 7,500 technology and creative reference books and
      videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
    our library online. Read books on your cell phone and mobile devices.
    Access new titles before they are available for print, and get exclusive
    access to manuscripts in development and post feedback for the authors.
    Copy and paste code samples, organize your favorites, download chapters,
    bookmark key sections, create notes, print out pages, and benefit from
    tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
    service. To have full digital access to this book and others on similar
    topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us



Please address comments and questions concerning this book to the
    publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the United States or Canada)
	(707) 829-0515 (international or local)
	(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples,
    and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/9781449305192

To comment or ask technical questions about this book, send email
    to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
    news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia
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Chapter 1. DNS and IPv6



Background



In early February 2011, the Internet Assigned Numbers Authority, or
    IANA, assigned the last remaining IPv4 address space to the five Regional
    Internet Registries (RIRs). As of this writing, the RIRs haven’t yet doled
    out that address space to carriers and other customers, but it’s clear
    that the exhaustion of IPv4 address space is imminent.
For most organizations on the Internet, the depletion of the
    Internet’s unallocated IPv4 address space won’t necessitate immediate
    changes—IPv4 isn’t going anywhere for the foreseeable future. In certain
    exceptional cases, however, organizations may need to implement IPv6
    almost right away: mobile carriers and ISPs seeking to expand their
    subscriber bases, for example, may need to use IPv6 for new subscribers if
    they lack additional IPv4 address space to use for expansion.
The Internet’s transition from IPv4 to IPv6 has begun. With the US
    government’s mandate that government agencies move their networks to IPv6,
    a growing number of users will access the Internet over the new protocol,
    and an increasing number of resources—websites, name servers, mail
    servers, and more—will be accessible via IPv6. In some cases, some may
    only be accessible over IPv6.
The transition to IPv6 will take years, maybe decades, to complete.
    Today, of course, IPv6 is already routed over the Internet: 9% of the
    Internet’s Autonomous Systems advertise routes to both IPv4 and IPv6
    networks. But IPv6 constitutes a tiny fraction of the traffic routed over
    the Internet. Organizations deploying new IPv6 networks today need to
    implement transition technologies that enable their IPv6-based devices to
    reach IPv4-only services.
Over time, however, the balance will shift, and so will the
    responsibility. As IPv6 becomes the predominant protocol on the Internet,
    the remaining pockets of IPv4 will need to accommodate IPv6, not vice
    versa. I imagine the transition playing out something like the move from
    rotary dialing to Touch-Tone™; in 1963, when the switch began, Touch-Tone™
    was a novelty you had to pay extra for. Now, of course, Touch-Tone™ is the
    norm (unless you’ve already moved on to VoIP) and rotary dialing is a
    curiosity you have to pay your phone company more to accommodate—if they
    can still handle it at all.


IPv6 and DNS



The exhaustion of the IPv4 address space wasn’t unexpected, of
    course. The Internet Engineering Task Force (IETF) developed IP version 6
    in the 1990s largely in anticipation of this day. Likewise, the Domain
    Name System was extended to accommodate IPv6’s longer IP addresses by
    adding new record types, and new versions of name servers, including BIND,
    were released to support those new record types as well as the use of IPv6
    to transport queries and responses. At this point, all but ancient BIND
    name servers support IPv6, though in most cases that support isn’t
    configured or used. We’ve just been waiting patiently for the protocol to
    catch on!

The ABCs of IPv6 Addresses



The most widely known aspect of IPv6, and really the only one that
    matters to DNS, is the length of the IPv6 address: 128 bits, four times as
    long as IPv4’s 32-bit address. The preferred representation of an IPv6
    address is eight groups of as many as four hexadecimal digits, separated
    by colons. For example:
2001:0db8:0123:4567:89ab:cdef:0123:4567
The first group, or quartet, of hex digits
    (2001, in this example) represents the most significant (or highest-order)
    sixteen bits of the address. In binary terms, 2001 is equivalent to
    0010000000000001.
Groups of digits that begin with one or more zeros don’t need to be
    padded to four places, so you can also write the previous address
    as:
2001:db8:123:4567:89ab:cdef:123:4567
Each group must contain at least one digit, though, unless you’re
    using the :: notation. The :: notation allows you to compress sequential
    groups of zeros. This comes in handy when you’re specifying just an IPv6
    prefix. For example:
2001:db8:dead:beef::
specifies the first 64 bits of an IPv6 address as
    2001:db8:dead:beef and the remaining 64 as
    zeros.
You can also use :: at the beginning of an IPv6 address to specify a
    suffix. For example, the IPv6 loopback address is commonly written
    as:
::1
or 127 bits of zero followed by a single one bit. You can even use
    :: in the middle of an address as shorthand for contiguous groups of
    zeros:
2001:db8:dead:beef::1
You can use the :: shorthand only once in an address, since more
    than one would be ambiguous.
IPv6 prefixes are specified in a format similar to IPv4’s CIDR
    notation. As many bits of the prefix as are significant are expressed in
    the standard IPv6 notation, followed by a slash and a decimal count of
    exactly how many significant bits there are. So the following four prefix
    specifications are equivalent (though obviously not equivalently
    terse):
2001:db8:dead:beef:0000:00f1:0000:0000/96
2001:db8:dead:beef:0:f1:0:0/96
2001:db8:dead:beef::f1:0:0/96
2001:db8:dead:beef:0:f1::/96
IPv6 is similar to IPv4 in that it supports variable-length network
    masks, and addresses are divided into network and host portions. However,
    in IPv6, there are recommended network masks for networks and subnets: the
    first 48 bits of an IPv6 address should identify a particular end site and
    a 64-bit prefix should identify one of up to 65,536 subnetworks at the
    site identified by the “parent” 48-bit prefix. As of this writing, all
    global unicast IPv6 addresses on the Internet (addresses that are unique
    and globally routable) have prefixes that begin with the binary value 001
    (equivalent to 2000::/3). These are assigned by Regional Internet
    Registries (RIRs) and Internet service providers. The prefix itself may be
    hierarchical, with an RIR responsible for allocating higher-order bits to
    various ISPs, and ISPs responsible for allocating the lowest-order bits of
    the prefix to its customers.
After the end-site prefix, unicast IPv6 addresses typically contain
    another 16 bits that identify the particular subnetwork within an end
    site, called the subnet ID. The remaining bits of the
    address identify a particular network interface and are referred to as the
    interface ID.
Here’s a diagram that shows how these parts fit together:
|        48 bits         |  16 bits  |           64 bits          |
+------------------------+-----------+----------------------------+
|         prefix         | subnet ID |       interface ID         |
+------------------------+-----------+----------------------------+
/                        \
|                         +------------------------------------\
|  3bits   |  9bits   |  12-20bits   |        16-24bits         |
+----------+----------+--------------+--------------------------+
|  IETF    |   IANA   |      RIR     |         RIR or ISP       |
+----------+----------+--------------+--------------------------+
As you can see in the diagram, the 48-bit prefix is made up of
    several parts. As previously mentioned, the first three bits are assigned
    by IETF to indicate “Global Unicast Space.” The next nine bits are
    assigned by IANA to a particular RIR (for example, 2620::/12 is assigned
    to ARIN, the American Registry for Internet Numbers). The RIR then assigns
    prefixes to ISPs and end users ranging from 24 to 48 bits (the RIR
    controls between 12 and 36 bits). Finally, in an ISP’s address space, the
    ISP can assign the bits after its RIR-assigned prefix up to the /48
    allocated to each customer end site.
Coincidentally, Movie University just arranged to get IPv6
    connectivity from our ISP. The ISP assigned us a /48-sized IPv6 network,
    2001:db8:cafe::/48, which we’ll subnet using the scheme just described
    into /64-sized subnetworks.
Note
What’s this fe80:: address?
If you’re poking around on a Unix or Linux system with
      ifconfig, netstat or the like,
      you may notice that your host’s network interfaces already have IPv6
      addresses assigned to them, starting with the quartet “fe80.” These are
      link-local scoped addresses, derived automatically from the interfaces’
      hardware addresses. The link-local scope is significant—you can’t access
      these addresses from anywhere but the local subnet, so don’t use them in
      delegation, masters substatements, and the like.
      Use global unicast addresses assigned to the host instead. You probably
      shouldn’t even use link-local addresses in the configuration of
      resolvers on the same subnet if there’s any chance that those resolvers
      will move (e.g., if they’re on laptops or other mobile devices).


IPv6 Forward and Reverse Mapping



Clearly, DNS’s A record won’t accommodate IPv6’s 128-bit addresses;
    an A record’s record-specific data is a 32-bit address in dotted-octet
    format.
The IETF came up with a simple solution to this problem, described
    in RFC 1886. A new type of address record, AAAA, was used to store a
    128-bit IPv6 address, and a new IPv6 reverse-mapping domain,
    ip6.int, was introduced. This solution was
    straightforward enough to implement in BIND 4. Unfortunately, not everyone
    liked the simple solution, so they came up with a much more complicated
    one. This solution introduced the new A6 and DNAME records and required a
    complete overhaul of the BIND name server to implement. Then, after much
    acrimonious debate, the IETF decided that the new A6/DNAME scheme involved
    too much overhead, was prone to failure, and was of unproven usefulness.
    At least temporarily, they moved the RFC that describes A6 records off the
    IETF standards track to experimental status, deprecated the use of DNAME
    records in reverse-mapping zones, and trotted old RFC 1886 back out.
    Everything old is new again.
For now, the AAAA record is the way to handle IPv6 forward mapping.
    The use of ip6.int is deprecated, however, mostly for
    political reasons; it’s been replaced by
    ip6.arpa.

AAAA and ip6.arpa



The AAAA (pronounced “quad A,” not “ahh!”) record, described in RFC
    1886, is a simple address record with record-specific data that’s four
    times as long as an A record, hence the four As in the record type. The
    AAAA record takes as its record-specific data the textual format of an
    IPv6 address, exactly as described earlier. So for example, you’d see AAAA
    records like this one:
ipv6-host    IN    AAAA    2001:db8:1:2:3:4:567:89ab
As you can see, it’s perfectly okay to use shortcuts in the IPv6
    address, including dropping leading zeroes from quartets and replacing one
    or more contiguous quartets of all zeroes with ::.
RFC 1886 also established ip6.int, now replaced
    by ip6.arpa, a new reverse-mapping name space for
    IPv6 addresses. Each level of subdomain under
    ip6.arpa represents four bits of the 128-bit address,
    encoded as a hexadecimal digit just like in the record-specific data of
    the AAAA record. The least significant (lowest-order) bits appear at the
    far left of the domain name. Unlike the format of IPv6 addresses in AAAA
    records, omitting leading zeros is not allowed, so there are always 32
    hexadecimal digits and 32 levels of subdomain below
    ip6.arpa in a domain name corresponding to a full
    IPv6 address. The domain name that corresponds to the address in the
    previous example is:
b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa.
These domain names have PTR records attached, just as the domain
    names under in-addr.arpa do:
b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.8.b.d.1.0.0.2.ip6.arpa.  IN  PTR  
mash.ip6.movie.edu.

Adding AAAA Records to Forward-Mapping Zones



A and AAAA records can coexist side-by-side in any forward-mapping
    zone. So, for example, if your host has both an IPv4 and an IPv6 address
    (commonly called a “dual-stack” host), you can attach both A and AAAA
    records to its domain name:
suckerpunch    IN    A    192.249.249.111
               IN    AAAA 2001:db8:cafe:f9::d3
However, you should be careful with that configuration, at least for
    the time being. Some current resolvers will always look up AAAA records
    before A records, even if the host running the resolver lacks the ability
    to communicate with all IPv6 addresses (for example, the host only has a
    link-local IPv6 address, or uses some transition technology that gives it
    limited IPv6 connectivity). If you attach both A and AAAA records to a
    single domain name, as in the example above, a user of one of these broken
    resolvers would need to wait for his connection to the IPv6 address to
    time out before successfully connecting to the IPv4 address, which could
    take as long as a few minutes (see in Chapter 2 for a
    mechanism to help you deal with this).
Until these broken resolvers are fixed, it’s prudent to attach A and
    AAAA records to different domain names, at least for hosts offering
    services:
suckerpunch        IN    A    192.249.249.111
suckerpunch-v6     IN    AAAA 2001:db8:cafe:f9::d3
If you like the aesthetics better, you can use “v6” as a label in
    the domain name instead of as a suffix to the hostname:
suckerpunch.v6     IN    AAAA 2001:db8:cafe:f9::d3
Note that this doesn’t require that you create a new subzone called
    v6.movie.edu; a subdomain in the same zone will do
    nicely.

IPv6 Reverse-Mapping Zones



If you use the standard IPv6 subnetting scheme shown in the diagram
    in , the reverse-mapping zones that correspond to your
    subnets will have 18 labels. For example, the subnet that
    suckerpunch.v6.movie.edu is on,
    2001:db8:cafe:f9::/64, would correspond to the reverse-mapping zone
    9.f.0.0.e.f.a.c.8.b.d.0.1.0.0.2.ip6.arpa. Remember
    that DNS is case-insensitive, so we could also have called the zone
    9.F.0.0.E.F.A.C.8.B.D.0.1.0.0.2.IP6.ARPA or even
    9.F.0.0.e.F.a.C.8.b.D.0.1.0.0.2.iP6.aRpA, if we’d
    been feeling punchy. They all would have handled reverse mapping of IPv6
    addresses just as well.
As with IPv4 reverse-mapping zones, IPv6 reverse-mapping zones
    mostly contain PTR records. And as with any zone, they must contain one
    SOA record and one or more NS records. Here’s what the beginning of that
    zone looks like:
$TTL 1d
@    IN    SOA    terminator.movie.edu.    hostmaster.movie.edu.    (
    2011030800        ; Serial number
    1h                ; Refresh (1 hour)
    15m               ; Retry (15 minutes)
    30d               ; Expire (30 days)
    10m )             ; Negative-caching TTL (10 minutes)

    IN    NS    terminator.movie.edu.
    IN    NS    wormhole.movie.edu.

3.d.0.0.0.0.0.0.0.0.0.0.0.0.0.0    PTR    suckerpunch.v6.movie.edu.
4.d.0.0.0.0.0.0.0.0.0.0.0.0.0.0    PTR    super8.v6.movie.edu.
Here’s hoping that most of your hosts will use dynamic update to
    register their own AAAA and PTR records, or else you’re going to wear out
    the period key on your keyboard.
If you’re going to add a lot of PTR records to an IPv6
    reverse-mapping zone by hand, it’s a good idea to make liberal use of the
    $ORIGIN control statement. For example, you could rewrite those last two
    PTR records as:
$ORIGIN 0.0.0.0.0.0.0.0.0.0.0.0.0.0.9.f.0.0.e.f.a.c.8.b.d.0.1.0.0.2.ip6.arpa.
3.d        PTR    suckerpunch.v6.movie.edu.
4.d        PTR    super8.v6.movie.edu.
The zone statement we added to the
    named.conf file on terminator to
    configure it as the primary name server for the reverse-mapping zone looks
    like this:
zone "9.f.0.0.e.f.a.c.8.b.d.0.1.0.0.2.ip6.arpa" {
    type master;
    file "db.2001:db8:cafe:f9";
};
Of course, you can name the zone data file whatever you like, but I
    suggest embedding the subnet’s prefix in there somewhere.
Warning
It’s probably best to avoid the use of the $GENERATE control
      statement in IPv6 reverse-mapping zones. Figuring out the right syntax
      to use to generate PTR records for such zones is tricky, and it’s easy
      to create so many PTR records that you can cause your name server to run
      out of memory.


Delegation and Reverse-Mapping Zones



You handle delegation with IPv6 reverse-mapping zones just as you
    would with IPv4 reverse-mapping zones—except it’s easier in one important
    respect. Those of you unfortunate enough to employ IPv4 subnet masks that
    don’t end on an octet boundary (e.g. /8, /16, and /24) wind up with either
    more than one reverse-mapping zone per subnet or multiple subnets per
    reverse-mapping zone. Those of you with subnets smaller than a /24 may
    even be forced to follow RFC 2317, which is really unfortunate.
With IPv6’s standard subnetting scheme, each subnet can contain a
    whopping 264 addresses, and you usually get
    over 65,000 subnets (assuming your ISP or RIR assigns a full /48 to you).
    Consequently, you probably won’t find yourself tempted to try to use a
    non-aligned subnet mask to make a subnet just large enough to accommodate
    the connected hosts. You’ll create a /48-sized reverse-mapping zone for
    your entire IPv6 network, and if necessary can delegate /64-sized
    subdomains from it.
For Movie University’s /48, 2001:db8:cafe::/48, the corresponding
    reverse-mapping zone is
    e.f.a.c.8.b.d.0.1.0.0.2.ip6.arpa. If we needed to
    delegate the 2001:db8:cafe:f9::/64
    subnet, introduced earlier, to a different set of name servers, we
    could add delegation like so:
$TTL 1d
@    IN    SOA    terminator.movie.edu.    hostmaster.movie.edu.    (
    2011030800        ; Serial number
    1h                ; Refresh (1 hour)
    15m               ; Retry (15 minutes)
    30d               ; Expire (30 days)
    10m )             ; Negative-caching TTL (10 minutes)

    IN    NS    terminator.movie.edu.
    IN    NS    wormhole.movie.edu.

9.f.0.0    IN    NS    adjustmentbureau.movie.edu.
           IN    NS    rango.movie.edu.
Of course, no glue addresses are necessary, because the domain names
    of the name servers aren’t below the delegation point.

Built-In Empty Reverse-Mapping Zones



There are quite a few IPv6 addresses and networks that serve special
    purposes. For example, IPv6, like IPv4, has an unspecified address (used
    by uninitialized network interfaces) and a loopback address, as well as
    networks for link-local addresses and more. The latest versions of BIND 9
    include built-in empty versions of the reverse-mapping zones that
    correspond to these addresses and networks. The zones are empty so that
    your local BIND name server will respond to any queries to reverse map
    these addresses immediately with a negative answer, without forwarding
    that query off to the Internet to another name server just to get the same
    negative answer or no answer at all.
The table below lists the built-in reverse-mapping zones, the
    functions of the addresses and networks they map to, and the rough
    equivalent in IPv4:
	Reverse-mapping Zone
            Name
	Function
	IPv4
            Equivalent

	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.ip6.arpa
	Unspecified IPv6
            address
	0.0.0.0

	1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.ip6.arpa
	IPv6 Loopback
            Address
	127.0.0.1

	8.b.d.0.1.0.0.2.ip6.arpa
	IPv6 Documentation
            Network
	192.0.2/24

	d.f.ip6.arpa
	Unique Local
            Addresses
	10/8, etc. (RFC
            1918)

	8.e.f.ip6.arpa
	Link-Local
            Addresses
	169.254/16

	9.e.f.ip6.arpa
	Link-Local
            Addresses
	169.254/16

	a.e.f.ip6.arpa
	Link-Local
            Addresses
	169.254/16

	b.e.f.ip6.arpa
	Link-Local
            Addresses
	169.254/16



BIND is smart enough to notice if you’ve already configured your own
    version of one of these reverse-mapping zones (even if the zone isn’t an
    authoritative zone, such as a forward or stub zone), so you can easily
    override BIND’s empty zones. To disable individual built-in empty zones
    without creating explicit zone statements for them,
    use the disable-empty-zone substatement, which takes
    as an argument the domain name of the zone to disable:
options {
    disable-empty-zone "d.f.ip6.arpa";
};
To disable all built-in empty zones, you can use the
    empty-zones-enable substatement. By default, of
    course, they’re enabled, so
options {
    empty-zones-enable no;
};
will disable them. You can use
    disable-empty-zone and
    empty-zones-enable as either
    options or view
    substatements.

Chapter 2. BIND on IPv6



Modern BIND 9 name servers include complete support for IPv6, which
  means not only handling queries that ask for the IPv6 addresses of a given
  domain name, but also responding to those queries over IPv6, as well as
  querying other name servers over IPv6.
Listening for Queries



By default, BIND 9 name servers won’t listen for queries that arrive
    on an IPv6 interface. To tell the name server to listen on an IPv6
    interface, use the listen-on-v6 substatement. The
    simplest form of this substatement is:
options {
    listen-on-v6 { any; };
};
which instructs the name server to listen for queries on any IPv6
    network interfaces configured on the host. If you need to be more
    selective, you can specify a particular interface or particular
    interfaces:
options {
    listen-on-v6 { 2001:db8:cafe:1::1; 2001:db8:cafe:2::1; };
};
You can even negate entries in the list and specify entire networks,
    in which case the name server will listen on any interface on the matching
    network. If you need your name server to listen on a port other than 53
    (the default), specify it immediately after
    listen-on-v6. Here’s an example that incorporates all
    of these:
options {
    listen-on-v6 port 5353 { !2001:db8:cafe:1::1; 2001:db8:cafe::/64; };
};
This configures the name server to listen on port 5353 on all
    interfaces with IPv6 addresses on the network 2001:db8:cafe::/64 (that is,
    the Movie U. IPv6 network) except the address 2001:db8:cafe:1::1.
If you need to have your name server listen on multiple ports at the
    same time, just use multiple listen-on-v6
    substatements. You can only use listen-on-v6 as an
    options substatement, since it controls the behavior
    of the entire named process.


Sending Queries



Once you’ve configured a name server to listen on an IPv6 interface,
    the name server will automatically query other name servers over IPv6 when
    necessary. The source IP address of these queries will depend on which
    interface the route to the queried name server points through. To change
    this behavior, use the query-source-v6
    substatement.
query-source-v6 uses a syntax that is—somewhat
    frustratingly—different from that of listen-on-v6.
    The name server’s default behavior, using whichever source IPv6 address a
    route points through and whichever query port suits it, is equivalent to
    this substatement:
options  {
    query-source-v6 address * port *;
};
To tell the name server to use a particular address, simply replace
    the * after the address keyword with a single IPv6
    address, like so:
options {
    query-source-v6 address 2001:db8:cafe:1::1;
};
As with listen-on-v6,
    query-source-v6 can only be used as an
    options substatement.
You can also specify that the name server use a particular source
    port in outgoing queries—but you shouldn’t. This defeats the name server’s
    query port randomization, which is a very important weapon against
    cache-poisoning attacks.

More on Query Port Randomization



Ever since the discovery of the Kaminsky vulnerability, BIND name
    servers have sent queries from random ports to make it more difficult to
    spoof responses to those queries. With random query ports, a would-be
    spoofer must guess which port to send a spoofed response to. And by
    default, BIND 9 chooses its random query ports from a very large pool:
    from port 1024 to port 65535.
If you need to tell the name server not to use a particular query
    port—for example, because certain ports are blocked by your firewall—use
    the avoid-v6-udp-ports substatement, which takes a
    list of ports as its argument:
options {
    avoid-v6-udp-ports { 1024; 1025; };
};
You can also specify the list of ports to avoid as a range:
options {
    avoid-v6-udp-ports { range 1024 1025; };
};
If for whatever reason you need to restrict the range of ports BIND
    uses to one smaller than the default, use the
    use-v6-udp-ports substatement, which takes the range
    as an argument:
options {
    use-v6-udp-ports { range 1024 16727; };
};
Again, be very careful, since restricting the range too much will
    limit the effectiveness of query port randomization.

Forcing the Use of a Particular Protocol



Occasionally, you may want to force a name server not to use IPv4 or
    IPv6 despite the fact that the host it’s running on has dual stacks. For
    example, you may know that the host
    isn’t capable of reaching the entire IPv6 Internet because of limitations
    in the transition technology you use. In situations like this, you can
    tell the name server to use only IPv4 or only IPv6 with the
    −4 and −6 command-line options,
    respectively.
% named −4
tells the name server to use only IPv4, while
% named −6
obviously, tells the name server to use only IPv6.

IPv6 Masters and Slaves



Of course, BIND supports zone transfers over IPv6, too. To configure
    a slave name server to transfer a zone from its master using IPv6, just
    specify the master’s IPv6 address in the zone’s
    masters substatement:
zone "movie.edu" {
    type slave;
    masters { 2001:db8:cafe:1::1; };
    file "bak.movie.edu";
};
To make this more readable, I suggest using the new
    masters statement. masters lets
    you assign a name to a list of master name servers, and then refer to that
    name in zone statements. Even if the list consists of
    just a single master name server, giving it a name will make it much
    easier to identify:
masters terminator.movie.edu { 2001:db8:cafe:1::1; };

zone "movie.edu" {
    type slave;
    masters { terminator.movie.edu; };
    file "bak.movie.edu";
};
If you want to specify a TSIG key or even an alternate port on the
    master name server to transfer from, you can specify those in the
    masters statement:
masters terminator-and-wormhole {
    2001:db8:cafe:1::1 key tsig.movie.edu;
    2001:db8:cafe:2::1 port 5353 key tsig.movie.edu;
};
You can even use names defined in masters
    statements with stub zones.
Note that masters is a top-level statement: you
    can’t use it inside an options or
    view statement.

Other IPv6 Zone Transfer Controls



As you’d expect, given the thoroughness of the good folks at ISC who
    develop BIND, there are also IPv6 equivalents of the
    transfer-source and
    notify-source substatements, called, not
    surprisingly, transfer-source-v6 and
    notify-source-v6. These instruct the name server to
    use particular IPv6 source addresses when initiating zone transfers from
    master name servers or when sending NOTIFY messages to slave name servers.
    These can be useful when, for example, a master name server only allows
    zone transfers initiated from a particular IPv6 address but the slave has
    multiple IPv6 addresses[1], or when a slave only knows its master name server by a
    particular IPv6 address (and therefore ignores NOTIFY messages from other
    IPv6 addresses the master may have).
The default, of course, is to use the IPv6 address of whichever
    interface the route to the master or slave points through, which is the
    same as:
options {
    transfer-source-v6 *;
    notify-source-v6 *;
};
To initiate zone transfers or send NOTIFY messages only from a
    particular IPv6 address, simply replace * with that address, like
    this:
options {
    transfer-source-v6 2001:db8:cafe:1::1;
    notify-source-v6 2001:db8:cafe:1::1;
};


[1] But they really ought to use TSIG to secure zone transfers, not
        IP address-based ACLs.



IPv6 Networks and Addresses in ACLs



To support IPv6, access control lists (ACLs) were extended to allow
    the specification of IPv6 addresses. Specifying IPv6 addresses in ACLs
    works as you’d expect it to:
acl Movie-U {
    2001:db8:cafe::/48;
};

acl campus-subnets {
    2001:db8:cafe:1::/64;
    2001:db8:cafe:2::/64;
};
You can, of course, mix IPv4 and IPv6 in the same ACL:
acl terminator {
    2001:db8:cafe:1::1;
    192.249.249.1;
};
And you can negate entries, too, to prevent matches:
acl all-subnet-but-terminator {
    !2001:db8:cafe:1::1;
    2001:db8:cafe:1::/64;
};
The built-in localhost and
    localnets ACLs have also been enhanced:
    localhost now includes all of the host’s IPv6
    addresses as well as its IPv4 addresses. (Note that this typically
    includes both a link-local address and a global unicast address on a name
    server configured to run over IPv6.) localnets
    includes IPv4 and IPv6 networks connected to the host, providing the
    operating system supports determining the prefix length of the host’s IPv6
    addresses. If it doesn’t, localnets includes locally
    connected IPv4 networks but just the host’s IPv6
    addresses.
Especially with IPv6, I encourage you to define and use ACLs with
    intuitive names to make your named.conf files more
    readable. There’s a tremendous difference between this:
allow-query {
    192.249.249/24;
    192.253.253/24;
    2001:db8:cafe:1::/64;
    2001:db8:cafe:2::/64;
};
and this:
allow-query {
    movie-u-internal-networks;
};

Registering IPv6 Name Servers



Once you’ve set up an IPv6 name server that’s authoritative for one
    or more zones, you may want to add the new IPv6 address to those zones’
    delegation information. That will require that your parent support
    registration of IPv6 addresses for name servers. Almost all top-level
    domains, such as com, net, and
    org and most large country-code top-level domains,
    such as uk and de, support IPv6
    addresses for name servers. In most cases, however, you don’t deal
    directly with the administrators of these domains, but rather work through
    an intermediary called a registrar. Unfortunately,
    not all registrars support registration of IPv6 addresses. If yours
    doesn’t, you may have no choice but to transfer your zones to a registrar
    that does, or at least threaten to if they don’t get their act
    together.
The actual process you use to register a name server’s IPv6 address
    varies depending on the registrar, but most good registrars provide
    reasonably intuitive web-based interfaces for managing delegation
    information and allow you to simply enter an IPv6 address there.
If your parent zone is managed by someone else in your
    organization—say a network administrator at your company’s corporate
    headquarters—ask them how they’d like the new address submitted. It may be
    as easy as sending them email.
For the time being, while IPv6 is still catching on, make sure that
    you register both IPv4 and IPv6 addresses for your name servers. If you
    don't have any IPv4–speaking name servers, most recursive name servers on
    the Internet won't be able to resolve any of your domain names.

Delegating to IPv6 Name Servers



If you manage a parent zone (that is, you’re the network
    administrator at your company’s corporate headquarters mentioned earlier),
    the administrators of your subzones may ask you to add IPv6 addresses to
    their delegation. Doing so is straightforward.
Say the network administrator of our computer-generated imagery
    department, cgi.movie.edu, has just set up a new IPv6
    network and wants us to add his name servers’ new IPv6 addresses to his
    delegation. Currently, his delegation looks like this:
cgi.movie.edu.        IN    NS    avatar.cgi.movie.edu.
cgi.movie.edu.        IN    NS    tron.cgi.movie.edu.

avatar.cgi.movie.edu.       IN    A    192.249.249.169
tron.cgi.movie.edu.         IN    A    192.253.253.169
He’s just set up the IPv6 subnets 2001:db8:cafe:10::/64 and
    2001:db8:cafe:11::/64, so after adding AAAA records for the two hosts, the
    delegation looks like this:
cgi.movie.edu.        IN    NS    avatar.cgi.movie.edu.
cgi.movie.edu.        IN    NS    tron.cgi.movie.edu.

avatar.cgi.movie.edu.       IN    A    192.249.249.169
                            IN    AAAA 2001:db8:cafe:10::2
tron.cgi.movie.edu.         IN    A    192.253.253.169
                            IN    AAAA 2001:db8:cafe:11::2
It’s worth reiterating here that glue A or AAAA records are
    necessary in delegation only when a
    subdomain is delegated to a name server that ends in the name of the
    subdomain (as tron.cgi.movie.edu ends in
    cgi.movie.edu). If that’s not true, glue records
    aren’t needed.

Server Statements for IPv6 Name Servers



If you need to tweak the way your name server communicates with a
    particular remote name server, you use the server
    statement. The server statement now supports IPv6 addresses, too, so if
    you wanted to tell your name server to use the TSIG key
    movie.edu.key when communicating with
    terminator.movie.edu over IPv6, you could use the
    following server statement:
server 2001:db8:cafe:1::1 {
    keys { movie.edu.key; };
};
And remember that the server statement now (since at least BIND
    9.5.0) accepts the specification of an entire network as an argument, so
    you can configure how your name
    server communicates with a whole set of name servers. For
    example, to tell your name server not to query any of the name servers on
    the Movie U. IPv6 network, you could use this server statement:
server 2001:db8:cafe::/48 {
    bogus yes;
};
But why would you ever want to do that?
For a more complete list of server
    substatements, see DNS and BIND.

Special Considerations



Handling “Monolingual” Name Servers



For the foreseeable future, we’ll run both the IPv4 and IPv6
      protocols in parallel on the Internet. While today, the vast majority of
      zones are served by name servers with only IPv4 connectivity, some
      day—hopefully sooner rather than later—we’ll see zones served only by
      IPv6 name servers. Either kind of zone introduces an interoperability
      challenge, though: how can a recursive name server with only IPv6
      connectivity resolve a domain name in a zone served only by IPv4 name
      servers? And what about the converse?
BIND 9 allows you to configure a sort of “protocol forwarder”
      called a dual-stack server for these poor
      monolingual recursors. When a recursor needs to look up data in a zone
      served only by name servers that don’t speak the same protocol, it
      simply forwards that query to the dual-stack server and waits for a
      response. (The forwarded query is recursive, otherwise the name server
      doing the forwarding might receive a referral in reply, which wouldn’t
      help much.)
The basic syntax is similar to that used to configure
      forwarders:
dual-stack-servers { 192.249.249.1; 192.249.249.3; };
You can also specify the dual-stack servers by domain name, which
      is a nice change:
dual-stack-servers {
    terminator.movie.edu;
    wormhole.movie.edu;
};
Just make sure your name server can resolve the domain names of
      the dual-stack servers to addresses with the one protocol it
      speaks.
As a best practice, however, it’s a good idea to run your name
      servers on dual-stack hosts whenever possible and to use
      dual-stack-servers only when you have no other choice.

Handling Broken Resolvers



Including support for IPv6 in a resolver is laudable. Preferring
      IPv6 addresses when they’re available is admirably progressive, too. But
      some resolvers will look up AAAA records even though the underlying
      operating system can’t really use them. Maybe the host uses a tunneling
      configuration that gives it limited IPv6 connectivity, for example. When
      the resolver returns the IPv6 address, and some client software tries to
      connect to it, it can take several minutes for the client to fall back
      to IPv4. Worse, the software can incur this delay for every connection
      it makes—once for each image that appears on a web page, for
      example.
Thankfully, these situations are fairly rare. Estimates from
      Google and Yahoo! suggest that these resolvers run on between 0.05% to
      0.078% of hosts on the Internet. But while that may not sound like a
      lot, when you’re dealing with a user base as large as theirs, it
      represents hundreds of thousands of users.
BIND versions 9.7.0 and later include a filtering mechanism for
      accommodating these resolvers. Basically, the mechanism decides whether
      or not to return AAAA records to a resolver based on the protocol over
      which the resolver sent its query. If the query arrived over IPv6,
      that’s proof enough that the resolver—and the host it runs on—has IPv6
      connectivity. If the query arrived over IPv4, though, the filter tells
      the name server to lie and claim (for the resolver’s own protection, of
      course) that no AAAA records exist even for domain names that really do
      own them. Presumably the resolver then goes on to request plain old A
      records.
This mechanism is somewhat controversial. Many members of the DNS
      community don’t like the idea of lying to resolvers. Moreover, lying can
      break DNSSEC validation. So the Internet Systems Consortium, which
      develops BIND, makes you jump through an extra hoop to use the feature:
      you need to compile the name server with the -enable-filter-aaaa
      option. The implicit message is, “Don’t use this unless you know what
      you’re doing.”
If compiled with that option, the name server will let you specify
      the filter-aaaa-on-v4 options substatement, which
      takes a simple yes or no as an
      argument:
options {
    filter-aaaa-on-v4 yes;
};
You can also use filter-aaaa-on-v4 as a
      view substatement, to apply only to that
      view.
By default, filter-aaaa-on-v4 doesn’t apply
      to queries with the DNSSEC OK (DO) bit set, because those suggest that
      the querier may perform DNSSEC validation. To override this, use
      break-dnssec as the argument:
options {
    filter-aaaa-on-v4 break-dnssec;
};
To apply filtering only to a subset of queriers, you can use the
      filter-aaaa options (and view)
      substatement, which allows you to specify the addresses of queriers
      whose responses should be filtered:
options {
    filter-aaaa-on-v4 yes;
    filter-aaaa { 192.249.249/24; };
};
Limiting the filter (if you use it at all) is a good precaution,
      since filtering can have unwanted side effects. For example, imagine an
      IPv6-only resolver configured to query a dual-stack recursive name
      server. If the recursive name server sent IPv4 queries to an
      authoritative name server that did filtering, it would always be told
      that no AAAA records existed, which would render the resolver unable to
      resolve any IPv6 addresses!


rndc and IPv6



rndc, the remote name daemon controller, can
    now communicate with a BIND name server over IPv6. This usually requires
    configuration on both the client (i.e., rndc) side
    and the server (named) side.
By default, the name server will only accept connections from
    rndc on the host’s IPv4 and IPv6 loopback addresses,
    127.0.0.1 and ::1, respectively. To tell the name server to listen on all
    of the host’s IPv6 addresses, specify the IPv6 wildcard address, ::, in
    the control statement:
controls {
    inet ::
    allow { localnets; }
    keys { rndc-key; };
};
You can also specify a single address to listen on:
controls {
    inet 2001:db8:cafe:1::1
    allow { localnets; }
    keys { rndc-key; };
};
Though not required, it’s always a good idea to limit incoming
    connections to a small set of addresses using an IP address-based ACL, and
    it’s critical to use a key to secure the control channel.
To tell rndc to connect to a host’s IPv6
    address, you can specify the address as the argument to the
    -s option:
% rndc -s 2001:db8:cafe:1::1 reload
Of course, if there’s a domain name that points to that address, you
    can use that as the option argument instead.

Chapter 3. Resolver Configuration



Configuring a resolver to query a name server over IPv6 is a piece of
  cake—assuming the resolver supports IPv6! You can just plug the IPv6 address
  of a recursive name server into the
  resolver. On a Unix-ish operating system, that’s usually done in the
  resolv.conf file with a nameserver
  directive:
nameserver 2001:db8:cafe:1::1
If the resolver is on the same host as a recursive name server, you
  can use the IPv6 loopback address, of course:
nameserver ::1
Mac OS X



With Mac OS X, resolver configuration is done in System Preferences.
    Click on System Preferences, then on Network (under
    the Internet & Wireless category). To configure the name servers you
    use when connected via AirPort, click on AirPort in the list of network
    interfaces on the left, then click on the Advanced... button at the lower
    right. In the window that appears, click on the DNS tab. The resulting
    window should look like this:
[image: image with no caption]

If your computer has been assigned a list of name servers by a DHCP
    server, you may find the DNS Servers: section populated. You can override
    this list by clicking the + button below the list, though. Enter one or
    more IPv6 addresses to query the name servers’ IPv6 addresses.
To configure the name servers you use when connected to the Internet
    via another network interface, such as your Mac’s Ethernet interface,
    simply choose Ethernet from the Network panel.


Windows



With Windows 7, start the Control Panel. Click on Network and
    Internet, then on Network and Sharing Center. Find the Local Area
    Connection and click on it. The Local Area Connection Properties window
    should appear. It looks like this:
[image: image with no caption]

Click on Internet Protocol Version 6 (TCP/IPv6); the Internet
    Protocol Version 6 (TCP/IPv6) Properties window will appear:
[image: image with no caption]

If you click on Use the following DNS server addresses, you can
    specify the IPv6 addresses of up to two recursive name servers.
As with Mac OS X, to configure the name servers your resolver
    queries when using a different network interface, simply choose that
    interface instead of Local Area Connection.
After reconfiguring your resolver to use IPv6, it’s a good idea to
    verify that DNS resolution still works with a tool such as
    dig or nslookup. See the chapter
    on troubleshooting later in this book for details.

Dynamic Resolver Configuration



IPv6 supports several methods for dynamically configuring a host’s
    IP address and other network parameters:
	A “traditional” method, using DHCPv6, the IPv6 version of
        DHCP

	Stateless Address Autoconfiguration, or SLAAC, in which a host
        uses Router Advertisements to assemble an IP address appropriate for
        use on the local network and to determine other network
        parameters

	A hybrid method, in which a host uses SLAAC for address
        assignment but DHCPv6 to determine other network parameters



In the first and last methods, resolver configuration involves
    setting the right DHCPv6 options. In the second, it requires setting up
    the correct Router Advertisement options.
But wait—how does a host choose whether to use SLAAC, DHCPv6, or
    both? A router tells it its options with flags in its Router
    Advertisements:
	The “M” flag, for “Managed Address Configuration,” tells hosts
        that DHCPv6 is available for both address assignment and network
        parameters (including resolver configuration).

	The “A” flag, for “Autonomous Address Configuration,” tells
        hosts that SLAAC is available for address assignment and network
        parameters (possibly including resolver configuration).

	The “O” flag, for “Other Stateful Configuration,” tells hosts
        that DHCPv6 is available for network parameters other than address
        assignment (that is, to be used together with SLAAC in the hybrid
        method described earlier).



Note that the host has a choice of methods to use and can use more
    than one. For example, a router may advertise the availability of both
    SLAAC and DHCPv6 for address assignment, and a host may get one IPv6
    address using SLAAC and another using DHCPv6. A host may also receive
    resolver configuration from both methods, and then merge them. Confusing,
    eh?
Resolver Configuration Using DHCPv6



IPv6 supports dynamic configuration of hosts using DHCPv6, and
      naturally you can use DHCPv6 to configure a resolver. DHCPv6 has new
      resolver configuration options, though—you can’t use the same old DHCPv4
      options to configure your resolver over DHCPv6. The new options
      are:
	Option
              Number
	ISC Option
              Name
	Option
              Argument

	23
	dhcp6.name-servers
	Comma-separated list of
              IPv6 addresses

	24
	dhcp6.domain-search
	Comma-separated list of
              domain names



And here’s a snippet from an ISC DHCP server’s
      dhcpd.conf file to show you how the options are
      set:
option dhcp6.name-servers 2001:db8:cafe:1::1, 2001:db8:cafe:2::1;
option dhcp6.domain-search "cgi.movie.edu","movie.edu";
The ability to set a search list via DHCP is new; while RFC 3397
      introduced a DHCPv4 option to do that back in 2002, it was never widely
      supported by DHCP clients. DHCPv6 has supported configuration of the
      search list from the beginning, though, so all DHCPv6 clients should
      support it.
There’s another change in DHCPv6 worth mentioning. In IPv6, DHCP
      comes in two flavors: stateless and stateful. Stateful DHCPv6 is like
      DHCP on IPv4: a DHCP client can start with nothing but a MAC address and
      have an IP address plus other network configuration assigned. But
      stateless DHCPv6 is new and supports the hybrid method of configuring
      network stacks: a DHCP client that already has an IP address (e.g.,
      assigned using SLAAC) can retrieve network configuration
      excluding address assignment (which it doesn’t
      need) from a DHCPv6 server.

Resolver Configuration Using Router Advertisements



Router Advertisements originally didn’t contain any resolver
      configuration parameters, so although hosts could use SLAAC to configure
      most of their network stacks, they couldn’t configure their resolvers.
      For that, they needed to use stateless DHCPv6, which could provide the
      IPv6 addresses of recursive name servers, as well as other DNS-related
      parameters, such as a search list, as described in the last section. But
      this required that every IPv6 subnet be served by a DHCPv6 server, in
      many cases solely to provide resolver configuration.
Then RFC 6106 extended Router Advertisements to support the
      specification of the IPv6 addresses of recursive name servers as well as
      a DNS search list, eliminating the need for a DHCPv6 server in many
      cases.
The Router Advertisement option used to configure a resolver’s
      name servers is called RDNSS, for Recursive DNS Server. The option for
      configuring a resolver’s search list is called DNSSL, for DNS Search
      List. As the name suggests, Router Advertisements are sent by routers,
      so you would usually configure the options on those routers. And, of
      course, the particular syntax required would vary depending on the make
      of routers you ran.
I write “would” because RFC 6106 is very new (published in
      November 2010), so not much gear supports it yet, though there’s
      somewhat more support for RFC 5006, a precursor to RFC 6106. (RFC 5006
      introduced support for the RDNSS option but didn’t include a way to set
      a search list.) On the server side, Linux and various BSD operating
      systems have at least some support in rtadvd, the
      Router Advertisement daemon. On the client side, Mac OS X 10.7 (“Lion”)
      is rumored to support RFC 6106.
Here’s an example of configuring the RDNSS option in
      rtadvd.conf, the Linux version of
      rtadvd’s configuration file[2]:
interface eth0 {
    AdvSendAdvert on;
    prefix 2001:db8:cafe:1::/64 {
        AdvOnLink on;
        AdvAutonomous on;
    };
    rdnss 2001:db8:cafe:1::1 {
    };
};



[2] Note that the BSD operating systems use a substantially
          different syntax.



Chapter 4. DNS64



During the (likely very long) transition from IPv4 to IPv6, ISPs and
  other organizations will implement new networks that only support IPv6. For
  the foreseeable future, though, clients on those networks will still need
  access to services (e.g., websites) that don’t yet support IPv6. NAT64 and
  DNS64[3] are a pair of complementary transition technologies that help
  provide that access.
NAT64 is a function run on a dual-stack host. A NAT64 server accepts
  connections from clients that only speak IPv6 and then uses its own IPv4
  connectivity to communicate with IPv4-only servers on those clients’ behalf,
  then copies data between the IPv4 and IPv6 connections, effectively
  “bridging” the IPv4 and IPv6 networks. The clients don’t actually realize
  they’re connecting through NAT64—they’re led to believe that the IPv4-only
  servers they want to communicate with support IPv6 and that they’re talking
  directly to them.
How is that misdirection achieved? Through DNS—DNS64, in particular.
  The IPv6-only clients are configured to use one or more special name servers
  that support the DNS64 function. When one of these name servers receives a
  query from a client for AAAA (IPv6 address) records for some domain name, it
  looks for an answer, as it normally would. If it doesn’t find any such
  records, it tries looking up A records for the same domain name. If it finds
  one or more A records, it doesn’t return them to the client (which can’t use
  them, anyway, and wouldn’t accept them, since it asked specifically for AAAA
  records). It “synthesizes” an equal number of AAAA records from those A
  records, embedding the 32-bit IPv4 addresses in 128-bit IPv6 addresses. Now
  the client believes the server supports IPv6 and that it can communicate
  with it directly.
The client, then, tries to connect to one of these fictional—er,
  synthesized—IPv6 addresses. How does the NAT64 server intercept this
  traffic? Easy! The route to the network on which the synthesized IPv6
  address lies leads right to the NAT64 server. The NAT64 server terminates
  the IPv6 connection, extracts the embedded IPv4 address, and connects to the
  IPv4 server on the IPv6 client’s behalf. This process is illustrated in
  Figure 4-1.
[image: DNS64 and NAT64 at Work]

Figure 4-1. DNS64 and NAT64 at Work


BIND versions 9.8.0 and later support DNS64 with the dns64
  options substatement. dns64 supports the
  configuration of an IPv6 prefix to which the embedded IPv4 address is
  appended, as well as an optional suffix that is then appended to the IPv4
  address to complete the 128-bit address. (The prefix is often 96 bits long,
  in which case no suffix is required, or even possible.) Here’s a basic
  example:
dns64 64:ff9b::/96 {
    suffix ::;
};
::, an all-zeroes suffix, is the default, so you can leave that
  substatement out if you like.
Now, there are good reasons that you may not want to apply DNS64 to
  every querier. For instance, you may have a community of dual-stack clients
  on your network. When asked by an application to find the address of a
  server, many stub resolvers on dual-stack clients will send AAAA queries
  before they send A queries. With DNS64 enabled, such clients would never see
  the A records of IPv4-only servers; DNS64 would always return synthesized
  AAAA records to them, even though the clients were perfectly capable of using the servers’ A records. This,
  in turn, would shunt traffic through your NAT64 infrastructure
  unnecessarily.
The dns64 statement supports a
  clients substatement that allows you to select which
  clients the DNS64 function applies to. By default, DNS64 applies to all
  clients; that is:
dns64 64:ff9b::/96 {
    clients { any; };
};
But you can specify any ACL you like as an argument. Here’s an
  example:
dns64 64:ff9b::/96 {
    clients { 2001:db8:cafe:1::/64; };
};
As always, it’s a good idea to use named ACLs whenever possible for
  clarity.
There are also IPv4 networks that you may not want mapped into IPv6
  addresses by DNS64. For example, if you run a DNS64 function to give your
  IPv6-only clients access to the IPv4 Internet, you don’t want to embed any
  RFC 1918 addresses that name servers on the Internet might inadvertently
  return. To avoid that, use the dns64 mapped
  substatement. This dns64 statement would prevent DNS64
  from mapping 10/8 addresses, for example:
dns64 64:ff9b://96 {
    mapped { !10/8; any; };
};
Of course, RFC 1918 includes more than just 10/8.
Note
You may notice that I use the prefix 64:ff9b:://96 liberally in my
    DNS64 examples. That’s because that network is reserved for mapping IPv4
    addresses into IPv6, and it’s the default used by many NAT64
    implementations. You can use a different prefix if you prefer, but make
    sure it matches what’s configured on (and routed to) your NAT64 server,
    and choose it from some private IPv6 address space (there’s plenty of it)
    so it doesn’t interfere with routing to real IPv6 destinations. NAT64
    prefixes are restricted by RFC to /32s, /40s, /48s, /56s, /64s, or /96s.
    If you choose a /96, a suffix is superfluous, of course, but other prefix
    lengths allow the configuration of a suffix (though again, the suffix is
    optional, and defaults to ::). As with the prefix, make sure your NAT64
    server is configured with the same suffix.

Normally, DNS64 only applies to domain names that don’t have AAAA
  records. (If the domain name had one or more AAAA records, the name server
  would simply have returned them to the IPv6-only client.) But sometimes you
  may want the name server to ignore AAAA records that contain certain IPv6
  addresses and apply DNS64 to a domain name. In that case, you can use the
  exclude substatement, which allows you to specify one
  or more IPv6 networks or addresses whose presence DNS64 should ignore and
  synthesize new AAAA records anyway. Here’s an example:
dns64 64:ff9b::/96 {
    clients { 2001:db8:cafe:1::/64; };
    mapped { !10/8; any; };
    exclude { 64:ff9b::/96; };
};
This tells DNS64 to ignore any AAAA records that map to IPv6 addresses
  on the network 64:ff9b::/96 and to look up A records for those domain names
  and synthesize new AAAA records instead.
Authoritative Name Servers and DNS64



What I’ve described so far is DNS64 as performed by a recursive name
    server, but authoritative name servers can implement DNS64, too. In fact,
    if you configure your name server to do DNS64 and it’s also authoritative
    for one or more zones, it’ll apply DNS64 to queries in those zones by
    default, too. In this case, the name server synthesizes AAAA records from
    A records in zones for which it’s authoritative. (Of course, it’ll only do
    this if no AAAA records exist for the domain name.)
If you want to restrict DNS64 to recursive queries, you can use the
    recursive-only substatement:
dns64 64:ff9b::/96 {
    recursive-only yes;
};
The default is to apply DNS64 to both recursive and nonrecursive
    queries.



[3] NAT64 and DNS64 are pronounced as “NAT six four” and “DNS six
      four,” respectively—not “NAT sixty-four” and “DNS sixty-four.”



Interaction Between DNS64 and DNSSEC



After reading about DNS64, those of you who have already read
    DNS and BIND’s “Security” chapter may object: doesn’t
    the mechanism, when it’s working as designed, break
    DNSSEC? Yes, it sure can.
Imagine that a monolingual IPv6 client queries a recursive name
    server that supports DNS64 for AAAA records attached to a domain name in a
    signed zone. The recursive name server looks up AAAA records for the
    domain name and finds none. If the recursive name server is configured to
    perform DNSSEC validation and has a valid chain of trust to the zone in
    question, it will cryptographically validate the negative response from
    the authoritative name server. Surely it can’t lie to the client about an
    answer it has validated?
Actually, it can, and in many cases, the client won’t notice at all.
    That’s because most clients don’t perform validation themselves, but rely
    entirely on their recursive name servers for that.
As a safeguard, however, a BIND name server doesn’t synthesize a
    AAAA response if the DNSSEC OK (DO) flag was set in the query. In this
    case, the client querying the name server could be another name server
    configured to use it as a forwarder, and it might be
    configured to perform validation. That validation would fail on any
    synthesized AAAA record.
If you’re really hell-bent on rewriting even those responses, you
    can use the break-dnssec substatement:
dns64 64:ff9b://96 {
    break-dnssec yes;
};

DNS64 and Reverse Mapping



There’s one last detail of DNS64 worth mentioning: reverse mapping.
    If a client using a name server configured to perform DNS64 tries to
    reverse-map a synthesized IPv6 address, what happens? The name server in
    question responds with a CNAME record pointing the domain name used to
    reverse-map the synthesized IPv6 address (the one under
    ip6.arpa) to the domain name corresponding to the
    embedded IPv4 address (under in-addr.arpa). So if an
    A record pointing to 192.168.0.1 synthesizes a AAAA record pointing to
    64:ff9b::192.168.0.1 (or 64:ff9b::c0a8:1—same thing), the CNAME record
    looks like this:
1.0.0.0.8.a.0.c.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.b.9.f.f.6.4.0.0.ip6.arpa.    CNAME
1.0.168.192.in-addr.arpa.
The result is exactly what you’d want: the synthesized IPv6 address
    reverse-maps to whichever domain name the embedded IPv4 address maps
    to!

Chapter 5. Troubleshooting



Troubleshooting IPv6-related DNS problems isn’t much different from
  troubleshooting other DNS problems. The main things you need to know are how
  to specify the IPv6 address of a name server to query and how to forward-map
  and reverse-map IPv6 addresses. I’ll show you how to use both
  nslookup and dig to perform these
  tasks.
There’s one important thing to keep in mind with either query tool:
  they default to using IPv4,
  which means that whether you type
  nslookup terminator.movie.edu or dig
  wormhole.movie.edu, the program
  will look up A records (that is, IPv4 addresses). You need to specify AAAA
  records explicitly to look up IPv6 addresses. Likewise, nslookup –
  terminator.movie.edu will send a query to the name server’s IPv4
  address, not its IPv6 address. With recent versions of
  dig, dig @terminator.movie.edu
  will query the name server’s IPv6 address first, assuming
  terminator.movie.edu owns a AAAA record.
nslookup



First, I’ll reiterate something we said in DNS and
    BIND: nslookup is not a great
    troubleshooting tool for a number of reasons. It insulates you from the
    details of the DNS message and is prone to displaying errors that are
    unrelated to the query you’re interested in, such as an inability to
    reverse-map the address of the name server it’s querying to a domain name.
    But nslookup is more prevalent than my preferred DNS
    troubleshooting tool, dig, so I’m obliged to cover
    it.
First, to query a name server over IPv6, you’ll need to use either
    nslookup’s server command or
    specify the server’s IPv6 address on the command line. Most people use
    nslookup’s interactive mode, which you can enter
    simply by typing nslookup:
% nslookup
>
nslookup displays the > prompt in
    interactive mode. By default, nslookup will read the
    local host’s resolv.conf file and query the first
    name server listed in the file, or if no name server is specified, will
    try querying a name server on the local host, as the local resolver would.
    To change to query a different name server over IPv6, use the
    server command:
% nslookup
>   server 2001:db8:cafe:1::1
Default server: 2001:db8:cafe:1:1
Address: 2001:db8:cafe:1:1
You can also specify the server by its domain name, but if the
    domain name also points to an IPv4 address, nslookup
    will try to query that:
% nslookup
>   server terminator.movie.edu
Default server: terminator.movie.edu
Address: 192.249.249.1
Whoops. Look at the Address line. For situations like this, it’s a
    good idea to have a special domain name that points only to the name
    server’s IPv6 address, like terminator-v6.movie.edu
    or terminator.v6.movie.edu. Then the
    server command will work nicely:
% nslookup
>   server terminator.v6.movie.edu
Default server: terminator.v6.movie.edu
Address: 2001:db8:cafe:1::1
Note
Specifying the name server to query by domain name is a little
      dangerous, both because the name may not map to the address you expect
      (as in the example above) and because if you’re using a troubleshooting
      tool such as nslookup or dig,
      DNS is probably misbehaving anyway.
The last thing you want is to spend a lot of time troubleshooting
      a problem only to find that you’re not querying the name server you
      thought you were. So if you do specify the name server to query by name,
      double-check its address, and if in doubt, specify the name server by
      address instead.

In nslookup’s non-interactive mode, you can
    specify the server to query after you specify the domain name to look up.
    For example:
% nslookup -type=aaaa suckerpunch.movie.edu. terminator.v6.movie.edu.
If you want to specify the server to query but enter interactive
    mode, just use “-” in place of the domain name to query:
% nslookup - terminator.v6.movie.edu.
Finally, to forward-map and reverse-map IPv6 addresses, use the
    query types aaaa and ptr,
    respectively. Here’s how you’d look up
    suckerpunch.movie.edu’s IPv6 address:
% nslookup
> set q=aaaa
> suckerpunch.movie.edu.
Server:       terminator.v6.movie.edu.
Address: 2001:db8:cafe:1::1#53

suckerpunch.movie.edu    has AAAA address 2001:db8:cafe:f9::d3
>
And here’s how you’d reverse-map the address. Note that you don’t
    need to specify the query type explicitly—nslookup is
    smart enough to recognize the IPv6 address. You also can use the
    abbreviated form of the IPv6 address, dropping leading zeroes from
    quartets and using the :: shortcut:
% nslookup
> 2001:db8:cafe:f9::d3
Server:       terminator.v6.movie.edu.
Address: 2001:db8:cafe:1::1#53

3.d.0.0.0.0.0.0.0.0.0.0.0.0.0.0.9.f.0.0.e.f.a.c.8.b.d.0.1.0.0.2.ip6.arpa    name = 
suckerpunch.movie.edu.
If you’re feeling masochistic, you could specify all 34 labels of
    the domain name that corresponds to the IPv6 address, in which case you
    must explicitly change the query type to ptr:
% nslookup
> set type=ptr
> 3.d.0.0.0.0.0.0.0.0.0.0.0.0.0.0.9.f.0.0.e.f.a.c.8.b.d.0.1.0.0.2.ip6.arpa.
Server:       terminator.v6.movie.edu.
Address: 2001:db8:cafe:1::1#53

3.d.0.0.0.0.0.0.0.0.0.0.0.0.0.0.9.f.0.0.e.f.a.c.8.b.d.0.1.0.0.2.ip6.arpa    name = 
suckerpunch.movie.edu.
Of course, you can also do this from the command line, like
    so:
% nslookup -type=aaaa suckerpunch.movie.edu.
and
% nslookup 2001:db8:cafe:f9::d3


dig



The chief difference between nslookup and
    dig is that dig has no
    interactive mode: you specify everything at the command line. And
    dig is smart enough—in most cases—to differentiate
    between domain names and record types, so you can specify those in whichever order you like. To query a name server
    other than the first one in resolv.conf, type an @ followed by its
    domain name or IP address. As I mentioned earlier, if you use a
    domain name that owns both AAAA and A records, recent versions of
    dig will use the IPv6 address, so:
% dig @terminator.movie.edu. soa movie.edu.
has the same effect as
% dig @2001:db8:cafe:1::1 soa movie.edu.
To look up a AAAA record, just specify aaaa on
    the command line:
% dig aaaa suckerpunch.movie.edu.
or
% dig suckerpunch.movie.edu. aaaa
Either way, the output will look something like this:
; <<>> DiG 9.8.0 <<>> suckerpunch.movie.edu. aaaa
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 21059
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 5

;; QUESTION SECTION:
;suckerpunch.movie.edu.      IN    AAAA

;; ANSWER SECTION:
suckerpunch.movie.edu.    86400    IN    AAAA    2001:db8:cafe:f9::d3

;; AUTHORITY SECTION:
movie.edu.         86400     IN    NS    terminator.movie.edu.
movie.edu.         86400     IN    NS    wormhole.movie.edu.

;; ADDITIONAL SECTION:
terminator.movie.edu.     86400    IN    A       192.249.249.1
terminator.movie.edu.     86400    IN    AAAA    2001:db8:cafe:1::1
wormhole.movie.edu.       86400    IN    A       192.249.249.3
wormhole.movie.edu.       86400    IN    A       192.253.253.3
wormhole.movie.edu.       86400    IN    AAAA    2001:db8:cafe:2::1

;; Query time: 3 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Sun Mar 27 19:42:46 2011
;; MSG SIZE  rcvd: 219
To reverse-map an IPv6 address, avail yourself of the handy
    -x command-line option, which takes an IPv6 address
    (rather than its equivalent 34-label domain name) as an argument:
% dig -x 2001:db8:cafe:f9::d3
One trick suggested by Owen DeLong, one of my technical reviewers,
    is to let dig do the hard work of creating the
    34-label owner name of an IPv6 PTR record for you. For example, rather
    than laboriously typing the owner name that corresponds to
    2620:0:930::400:933, you could simply run dig -x
    2620:0:930::400:933:
% dig -x 2620:0:930::400:933

; <<>> DiG 9.6.0-APPLE-P2 <<>> -x 2620:0:930::400:933
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 28788
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0

;; QUESTION SECTION:
;3.3.9.0.0.0.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.3.9.0.0.0.0.0.0.2.6.2.ip6.arpa. IN PTR
...
Then copy the owner name from the line below ;; QUESTION
    SECTION and paste it into your zone data file.
Like nslookup, dig digs
    the abbreviated form of the IPv6 address. If you want to do it the hard
    way, you’ll have to specify the PTR query type on the command line:
% dig ptr 3.d.0.0.0.0.0.0.0.0.0.0.0.0.0.0.9.f.0.0.e.f.a.c.8.b.d.0.1.0.0.2.ip6.arpa.
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